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从局部到全局的规则模型：粒聚合研究

PEDRYCZ Witold
（加拿大阿尔伯塔大学埃德蒙顿分校 电气与计算机工程系，埃德蒙顿 T6R 2V4）

摘要：顾名思义，多视图模型是从不同的视角捕捉现实界系

统的模型，通常包含本地可用的特性（如属性、输入变量）。

综合考虑时，必须对一群多视图模型进行聚合。当建立一个

包含所有属性的整体模型不可行且不能通过合理的计算实

现时，多视图模型也会出现在包含大量变量的数据中。基于

模糊规则体系结构，考虑和讨论2种情形。在构建多视图模

型的聚合时，一个重要的任务是为整个全局模型设置一个可

靠的质量度量，使用该度量可以有效地评估由规则模型生成

的单个结果的相关性。提倡用输出的信息粒来量化结果的

质量，而不是一个单一的数字结果。在上述2个情形中，使用

合理粒度增强原理（粒计算的基础之一）聚合了一系列多视

图模型产生的结果。认为多视图模型传递的结果多样性可

以通过生成结果的粒度形式进行捕获和量化。最后，讨论了

相关的优化准则和优化过程。

关键词：粒聚合；合理粒度原则；粒计算；基于多视图规则的

模型；数据关系
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From Local to Global Rule-Based
Models: A Study in Granular
Aggregation
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Abstract：Multiview models，as the name stipulates，are
models capturing real-world system perceived from
different points of view（perspectives），typically engaging
locally available features （attributes， input variables）.
When considered together， a collection of multiview
models has to be aggregated. Multiview models also arise
in the presence of data with a massive number of variables
when building a monolithic model involving all attributes
is neither feasible nor computationally sound. In this
paper，two categories of scenarios have been formulated

and discussed by focusing on fuzzy rule-based
architectures. An important task when building an
aggregate of multiview models is to equip the overall
global model with a sound measure of quality，by using
which，one can efficiently assess the relevance of the
individual results produced by the rule-based models. It
is，therefore，advocated that the quality of the results can
be quantified by an output information granule rather than
a single numeric outcome. In the two scenarios outlined
above，the results produced by a family of multiview
models are aggregated with the use of the augmented
principle of justifiable granularity-one of the fundamentals
of Granular Computing. It is also advocated that the
diversity of the results delivered by multiview models can
be captured and quantified in the granular form of the
produced result. The related optimization criterion along
with the associated optimization process are discussed.

Key words：granular aggregation；principle of justifiable
granularity； granular computing； multiview rule-based

models；relationality of data

With the visible advancements and a broad
spectrum of applications of rule-based models and
fuzzy rule-based models， in particular， two open
design questions start to surface more vividly：

（1）Highly-dimensional data. The first design
question is about developing rules for highly
dimensional data. Such data come from problems in
which a large number of independent variables are
encountered. While large masses of data with quite a
limited number of variables are manageable by
engaging specialized computing environments（e. g.，
Hadoop or Spark），the high dimensionality of input
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space implies an eminent problem whose essence
arises due to a so-called concentration effect［3］stating
that the concept of distance starts losing its relevance.
Take any two points located on the n-dimensional
unit hypersphere—their distances start producing the
same value. Subsequently， the usefulness of any
algorithm using a concept of distance gets limited and
finally vanishes. This phenomenon hampers the
efficiency or even limits the feasibility of building rule-
based models. As in fuzzy rule-based models，the
design of a condition part of the rules involves
clustering（such as the fuzzy C-means algorithm），

which，in light of the concentration effect，becomes
questionable. This impacts the inherent difficulties
with the construction of the rules. To rectify this
problem，one can form a collection of models，each
of which involves only a certain subset of features.
The emergence of local models is motivated by the
evident design complexity and inefficiency of
construction process of a monolithic rule-based
model. Put it simply，its design is neither feasible nor
practical.

（2） Variety of data sources. The second
compelling question is implied by practical scenarios
where the knowledge about some system
（phenomenon） arises from different sources. The
system can be described by different features
（attributes）depending upon situations and available
resources used to collect data. Some variables could
not be accessible as there are no sensors or there are
limited abilities to access data. This gives rise to a
collection of so-called multiview models［15］，which are
models based on the local views of the system.
Considering subsets of input variables as opposed to
all variables en bloc might have a detrimental impact
of models involving only a few variables（in limit，
single variables） ， however as shown
experimentally［2］such simple models still make sense.

In both categories of situations described above，
we encounter a collection of results，which differ from
each other. They require to be reconciled in some
fusion（aggregation）process giving rise to a result of
a global nature. We advocate that in light of the
existing diversity of multiview models or models built

on a basis of subsets of features，the result can be
described as an information granule whereas the
granularity is reflective of the existing differences
among locally obtained data being then subject to
aggregation.

There are two main objectives of this study：
（1） To construct a suite of low-dimensional

models to alleviate the detrimental aspect of the
concentration effect. In this study，we resort to
building a slew of one-dimensional rule-based models
for which the design overhead becomes minimal.

（2） To develop a mechanism of granular
aggregation of results provided by multiview models.

Along with the above objective，two general
design schemes are sought， which could be
schematically portrayed as follows

（1） Individual models-aggregation-granular
evaluation of aggregation result.

（2）Individual models-granular evaluation of the
models-aggregation-granular evaluation of
aggregation result.

The paper is structured as follows. Section 2 is
devoted to the design of one-dimensional rule-based
models；we discuss their characteristics and several
development alternatives calling for different levels of
optimization activities. In Section 3，we highlight the
relational property of the data associated with the
number of input variables； this property is also
quantified. The principle of justifiable granularity is
covered in Section 4. The augmentation of the
principle including preference profiles is included in
Section 5. The aggregation operators are discussed in
Section 6. The overall architecture involving granular
aggregation and its refinements are discussed in
Section 7 and 8，respectively.

In the study，we consider all data assuming
values in the unit interval.

1 One-dimensional fuzzy rule-based
models

These single-input rule-based models come in
the following form［11］

if x is Ai then y=fi（ai，x） （1）
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i=1，2，…，c. Here Ai is a fuzzy set defined in the
input space while fi is a local function forming the
conclusion of the rule. The vector of parameters of
the function is ai. The rule-based models are
endowed with the inference（mapping）mechanism
carried out as follows：

y=∑
i=1

n

Ai fi（ai，x） （2）

In what follows，with an ultimate intent to
eliminate any optimization overhead associated with
the design of the rules，we outline a design process
which is effortless not calling for any optimization
procedures. Consider the data coming in the form of
input-output pairs D = （xk， targetk） ， k=1，
2，…，N.

（1）Ais are triangular fuzzy sets with 1/2 overlap
between the adjacent membership functions. The
modal values of these fuzzy sets are distributed
uniformly across the input space.

（2）The conclusion part is a constant function，
namely f（x；ai）=yi* where these constants are
determined on a basis of the data. We have

yj*=∑
k=1

N

Aj ( xk) targetk/∑
k=1

N

Aj ( xk) （3）

One can easily show that under these
assumptions，the input-output mapping of the above
rule-based model is nonlinear and realizes a piecewise
linear function；refer to Fig. 1.

The nonlinear model（function）produced in this

way is fully described by the coordinates of the cutoff
points（mj，yj*），j=1，2，…，c. These points are
specified by the modal values of the fuzzy sets and the
constant conclusions.

Interestingly， the rule-based model can be
regarded as a result of multiple linearization of
unknown mapping where the linearization is
completed around the modal values of the fuzzy sets
Ai. Linearization is commonly used in coping with
nonlinear problems； the multi-linearization （viz.
linearization with several linearization（cut off）points
at the same time）arises as an efficient strategy. Not
engaging any optimization process（which eliminates
any computing overhead），we form the rules.

If required，the improvement of the performance
of such rule-based model can be achieved in several
ways：

（1） Increasing the number of rules which
amounts to the increase of the number of the linear
segments used to approximate the nonlinear function

（2） Optimizing membership functions of Ai；

their location across the unit interval could be
optimized

（3） Optimizing constant conclusions of the
rules. Here we can determine the constants by
solving the following optimization problem：

Q=∑
k=1

N

( yk- targetk)2 （4）

where the minimization is carried out by adjusting the
values of y1*，y2*，…，yc*. The result of the model is
expressed as

y=∑
i=1

c

Ai ( x ) y*i （5）

（4）Incorporation of a polynomial format of the
functions forming the conclusion parts of the rules.
Considering Ais as above，when the conclusion of the
rule is a polynomial of order p， the input-output
characteristics of the model is a polynomial of order
p+1. It is easy to demonstrate this. For any x in the
interval［mi，mi+1］there are two rules activated；mi

and mi+1are the modal values of the corresponding
fuzzy sets. This yields the output in the following
way y= miPi（x，ai）+ mi+1Pi+1（x，ai）. Note that mi

and mi+1 are linear functions of x，say mi=b0i+b1ix

Fig. 1 Input-output piecewise-linear characteristics
of the fuzzy rule-based model
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and mi+1=b0，i+1+b1，i+1x. Therefore y =（b0i+b1ix）·
Pi（x，ai）+（b0，i+1+b1，i+1x ）Pi+1 （x，ai）. It is
apparent that y is a polynomial of order p+1.

2 Relational characterization of

data

The construction of a one-dimensional model
does not require any design effort and associated
computing overheard. There are some limitations.
When dealing only with a single input variable when
forming input-output model， we encounter an
emerging relational phenomenon of data. This
means that for two very closely located inputs，the
outputs could vary significantly. In particular，
because all but a single variable is considered，one
might encounter an extreme situation when for the
same input we have two or more different outputs.
Note that if the distance between xk and xl becomes
smaller in comparison to the distance between yk and
yl，we say the data exhibit a more visible relational
character. In limit，if for the same xk and xl（xk=xl）
we have yk different from yl，and these data cannot be
modeled by a function but a relation.

We are interested in the quantification of the
degree to which extent the data are of relational
nature，viz.

rel= degree（data exhibit relational character）
For instance， intuitively we envision that the

data in Fig. 2b exhibit more relational character than
the one shown in Fig. 2a. Having in mind the
property of high closeness of two inputs xk and xl
associated with different values（low closeness） of
the corresponding outputs yk and yl，we propose the
degree of relational nature computed in the following
way：

relkl=
ì

í

î

ïï
ïï

0，if |yk- yl ||≤ xk-xl|

1- || xk-xl
|| yk- yl +δ

，if || yk- yl >|xk-xl|
（6）

where a small value of δ，δ>0，prevents from the
division by zero. Note that when |xk—xl| becomes
lower for the same value of |yk—yl| higher than |xk—
xl|， this increases the value of the relationality
degree. The global index is determined by taking a
sum of relkl for the corresponding pairs of the data，
namely

rel=∑
k> l
relkl （7）

The higher the value of rel，the more evident the
relational nature of the one-dimensional data D.

Note that this index exhibits some linkages with
the Lipschitz constant K expressing the relationship
|yk-yl|<K|xk-xl|.

To illustrate the relational performance of some
data，we consider publicly available datasets coming
from the Machine Learning Repository https：//
archive. ics. uci. edu/ml/index. php. For instance，for
concrete data，Fig. 3 shows the input-output scatter
plot for the two variables x5 and x8. The more
apparent relational nature of x5 is also well reflected in
the higher values of the index of relationality；a
straightforward visual inspection confirms this. The
same convincing pattern is conveyed for the two other
datasets as well. The same conclusion stems from the
analysis of two other data sets（see Fig. 4 and Fig. 5）.

3 Principle of justifiable

granularity

The principle of justifiable granularity guides a
construction of information granule based on available
experimental evidence［7-8］. For further extensions and
applications，please refer to［4，13，1-14］.

In a nutshell，when using this principle，we
emphasize that a resulting information granule
becomes a summarization of data（viz. the available
experimental evidence）. The underlying rationale
behind the principle is to deliver a concise and abstract

Fig. 2 Input-output data and their relational nature
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characterization of the data such that（1）the produced
granule is justified in light of the available
experimental data，and（2）the granule comes with a
well-defined semantics meaning that it can be easily
interpreted and becomes distinguishable from the
others.

Formally speaking， these two intuitively
appealing criteria are expressed by the criterion of
coverage and the criterion of specificity. Coverage
states how much data are positioned behind the
constructed information granule. Put it differently，
coverage quantifies an extent to which information
granule is supported by available experimental
evidence. Specificity， on the other hand， it is
concerned with the semantics of information granule
stressing the semantics（meaning）of the granule. We
focus here on a one -dimensional case of data for
which we design information granule.

Coverage and specificity
The definition of coverage and specificity

requires formalization which depends upon the formal

nature of information granule to be formed. As an
illustration，consider an interval form of information
granule A. In case of intervals built on a basis of one-
dimensional numeric data（evidence）y1，y2，…，yn，
the coverage measure is associated with a count of the
number of data embraced by （contained in） A，

namely
cov（A）= card｛yk |yk ∈A｝/n （8）

card （.） denotes the cardinality of A， viz. the
number（count）of elements yk belonging to A. In
essence， coverage exhibits a visible probabilistic
flavor. Let us recall that the specificity of A，sp（A）
is regarded as some decreasing function g of the size
（length，in particular）of information granule. If the
granule is composed of a single element，sp（A）
attains the highest value and returns 1. If A is
included in some other information granule B，then
sp（A）> sp（B）. In a limit case，if A is an entire
space of interest sp（A）returns zero. For an interval-
valued information granule A =［a，b］，a simple
implementation of specificity with g being a linearly

Fig. 3 Concrete data: rel Fig. 4 Abalone data: rel
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decreasing function comes as

sp（A）=g（length（A））=1- |b- a|range （9）

where range stands for an entire space of interest over
which intervals（information granules）are defined.

The criteria of coverage and specificity are in an
obvious relationship，as shown in Fig. 6. We are
interested in forecasting temperature： the more
specific the statement about this prediction becomes，
the lower the likelihood of its satisfaction is.

From the practical perspective，we require that

an information granule describing a piece of
knowledge has to be meaningful in terms of its
existence in light of the experimental evidence and at
the same time，it is specific enough. For instance，
when making a prediction about temperature， the
statement about the predicted temperature 17. 65 is
highly specific but the likelihood of this prediction
being true is practically zero. On the other hand，the
piece of knowledge（information granule）describing
temperature as an interval ［ —10， 34］ lacks
specificity （albeit is heavily supported by
experimental evidence） and thus its usefulness is
highly questionable，as such this information granule
is very likely regarded as non-actionable. No doubt，
some sound compromise is needed. It is behind the
principle of justifiable granularity.

Witnessing the conflicting nature of the two
criteria， we introduce the following product of
coverage and specificity：

V= cov（A）sp（A） （10）
The desired solution （viz. the developed

information granule）is the one where the value of V
attains its maximum. Formally speaking，consider
that an information granule is described by the vector
of parameters p，V（p）. In case of the interval，p=
［a，b］. The principle of justifiable granularity applied
to experimental evidence returns to an information
granule that maximizes V，popt = arg pV（p）.

To maximize the index V through the adjusting
the parameters of the information granule， two
different strategies are encountered

（1） a two-phase development is considered.
First a numeric representative （mean， median，
modal value，etc.）is determined. It can be sought as
an initial representation of the data. Next， the
parameters of the information granule are optimized
by maximizing V. For instance，in case of an interval
［a， b］， one has the bounds （a and b） to be
determined. These two parameters are determined
separately，viz. the values of a and b are determined
by maximizing V（a）and V（b）. The data used in the
maximization of V（b）involves these data larger than
the numeric representative. Likewise V（a） is
optimized based on the data lower than this

Fig. 5 Superconductivity data: rel

Fig. 6 Relationships between abstraction (cover⁃
age) and specificity of information granules
of temperature
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representative.
（2） a single-phase procedure in which all

parameters of information granule are determined at
the same time. Here a numeric representative is not
required.

The two-phase algorithm works as follows.
Having a certain numeric representative of X，say the
mean， it can be regarded as a rough initial
representative of the data. In the second phase，we
separately determine the lower bound（a） and the
upper bound（b）of the interval by maximizing the
product of the coverage and specificity as formulated
by the optimization criterion. This simplifies the
process of building the granule as we encounter two
separate optimization tasks

aopt = arg maxaV（a）V（a）=
cov（［a，r］）sp（［a，r］）
bopt = arg maxbV（b）V（b）=
cov（［r，b］）sp（［r，b］） （11）

We calculate cov（［r，b］）= card｛yk| yk ∈［r，
b］｝/n. The specificity model has to be provided in
advance. Its simplest linear version is expressed as sp
（［r，b］）= 1— |b—r|/（ymax—r）. By sweeping
through possible values of b positioned within the
range［r，ymax］，we observe that the coverage is a
stair-wise increasing function whereas the specificity
decreases linearly，（see Fig. 7）. The maximum of
the product can be easily determined.

The determination of the optimal value of the
lower bound of the interval a is completed in the same
way as above. We determine the coverage by
counting the data located to the left from the numeric
representative r，namely cov（［a，r］）= card｛yk| yk ∈

［a，r］｝/n and compute the specificity as sp（［a，
r］）= 1— |a—r|/（r—ymin）.

The algorithmic essence of the principle is
captured in Fig. 8 where we emphasize the two
design phases， namely the determination of the
numeric representative（aggregation）followed by the
optimization of the criterion V which is realized
independently for the bounds a and b.

As a way of constructing information granules，
the principle of justifiable granularity exhibits a
significant level of generality in two essential ways.
First，given the underlying requirements of coverage
and specificity，different formalisms of information
granules can be engaged. Second， experimental
evidence could be expressed as information granules
articulated in different formalisms based on which
certain information granule is being formed.

The principle of justifiable granularity highlights
an important facet of elevation of the type of
information granularity： the result of capturing a
number of pieces of numeric experimental evidence
comes as a single abstract entity—information
granule. As various numeric data can be thought as
information granule of type-0，the result becomes a
single information granule of type-1. This is a general
phenomenon of elevation of the type of information
granularity. The increased level of abstraction is a
direct consequence of the diversity present in the
originally available granules. This elevation effect is
of a general nature and can be emphasized by stating
that when dealing with experimental evidence
composed of a set of information granules of type-n，
the result becomes a single information granule of
type（n+1）.

4 Augmentation of the principle

of justifiable granularity: error

Fig. 7 Example plots of coverage and specificity
(linear model) regarded as a function of b

Fig. 8 Two step-design of interval information
granule
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profiles

The principle of justifiable granularity can be
further extended by introducing a so-called error
profile.

The coverage criterion conveyed by Eq.（8）
reflects how information granule covers the data.
Quite often in modeling environment one obtains
information granule whose quality has to be evaluated
vis-à-vis error viz the difference between the numeric
result of the model and the numeric experimental data
expressed as ek = targetk —yk where yk is the k-th
result produced by the model. Obviously， we
anticipate that a sound model should produce values
of error close to zero however a notion of close to zero
requires more elaboration. Here a concept of error
profile comes into the picture.

The error profile f（e）is an information granule
（typically，a fuzzy set）whose membership function
describes in detail to which extent the error is
acceptable. Some examples of the profiles are shown
in Fig. 9. Their flexibility helps cope with the
particular requirements of modeling. For instance，
Fig. 9a the profile is binary. We do not tolerate any
error beyond the bounds —emax，emax. There could be
some membership functions facilitating a smooth
transition from full acceptance to a complete lack of
acceptance. The shapes of the membership functions
could vary being symmetric or points at higher
acceptance in the presence of values of error close to
zero and then dropping more visibly. Figure 9c
illustrates the piecewise character where more
flexibility is accommodated. Notably， the profiles
need not to be symmetric.

The error profile is made a part of computing
concerning the coverage criterion， namely in
calculations of b one has

cov（［r，b］）=∑
k=1
yk> r

N

[ incl ( y，[ r，b ] )ϕ( ek ) ]/n （12）

where incl（x，［a，b］）is a Boolean predicate such
that it returns 1 if x is included（covered） in the
interval and 0 otherwise. The computing of
specificity is carried out as before.

The principle can also involve weights and in this
situation，they are a part of the coverage criterion.
The values of the weights are determined based on
the performance of the individual local models. Given
that their performance is described by the index Q1，
Q2，…，Qn（those could be the results of computing
the RMSE value produced for each model），the
weight can be made a decreasing function of the Qk，

say wk= exp（—（Qk—Qmin）/（Qmax—Qmin）with Qmin
and Qmax being the values of Q for the best and the
words model.

The coverage expression comes in the form of

cov（［r，b］）=∑
k=1
yk> r

N

[ incl ( y，[ r，b ] )wk ]/n （13）

The accommodation of both the weights and the
error profile gives rise to the following expression：

cov（［r，b］）=∑
k=1
yk> r

N

[ incl ( y，[ r，b ] )wkϕ( ek ) ]/n （14）

5 Aggregation operators

The data y1， y2，… ， yn are to aggregated
（fused）. Formally，an aggregation operation agg：
［0，1］n →［0，1］is an n-argument mapping satisfying
the following requirements：

（1）Boundary condition agg（0，0，…0）=0，
agg（1，1，…，1）=1

（2） Monotonicity agg（y1， y2，… ， yn） ≥
agg（z1，z2，…，zn）for yi≥ zi，i=1，2，…，n

（15）

Fig. 9 Examples of error profiles f(e)
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Triangular norms and conforms［5-6，10，12］are
examples of aggregation operations. However there
are a number of other interesting alternatives. The
averaging operator deserves attention as it offers a
great deal of flexibility. An averaging operator
（generalized mean） is expressed in the following
parameterized form［1］：

agg（y1，y2，…，yn）= 1
n∑i=1

n

( yi)p
p

（16）
When p is a certain parameter， the class of

generalized mean is made a generalized class of
operators. The averaging operator is idempotent，
commutative，monotonic and satisfies the boundary
conditions agg（0，0，…，0）=0，agg（1，1，…，

1）=1.
Depending on the values of the parameter p，

there are several interesting cases
p =1 arithmetic mean agg（y1，y2，…，yn）=

1
n∑i=1

n

( yi)

p →0 geometric mean agg（y1，y2，…，yn）=
（y1y2…yn）1/n

p =—1 harmonic mean agg（y1， y2，… ，

yn）=
n

∑
i=1

n

(1/yi)

p →-∞ maximum agg（y1，y2，… ，yn）=
max（y1，y2，…，yn）

p→ →∞ minimum agg（y1，y2，… ，yn）=
min（y1，y2，…，yn）

6 Overall architecture of granular

aggregation of multiview

models

The overall architecture of the global model is
shown in Fig. 10.

Here we encounter n one-dimensional rule-based
models M1，M2，…，Mn followed by the aggregation
module where the results are aggregated. In contrast
to commonly studied methods of aggregation，an
important point is that the aggregation of numeric
results gives rise to an information granule. The

granularity of the results is crucial to the evaluation of
the quality of the overall architecture. Again，here
we look at the coverage and specificity criteria as
means to evaluate the obtained result.

In more detail，let us consider that the models
were constructed based on the input-output data（xk，
targetk）where xk is an n-dimensional vector of inputs，
k=1，2，…，N. The model Mi is constructed by
taking the i-th coordinate of the input data，viz（xki，
targetk）. The coverage is expressed as：

cov=∑
k=1

N

[ incl ( targetk，[ y-k ，y+k ] ) ]/N

（17）
while the specificity is given in the form of

sp=∑
k=1

N

[ 1- |y-k ，y+k | ) ]/N

（18）
The quality of the architecture is expressed as

the product of these two criteria；cov*sp the higher
the product，the better the quality becomes.

7 Granular one-dimensional rule-

based models and their

granular aggregation

The one-dimensional models are not ideal
（especially because of the relational format of the
data）. We augment the numeric output of the model
by its granular extension by admitting that it comes as
an interval of some level of information granularity e
spread around the numeric result produced by the rule-
based model. Information granularity is reflective of
the diversity of the results.

Let us refer to the piecewise linear characteristics
of the model，（see Fig. 11）.

Fig.10 Granular aggregation of multiview models
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Recall that the input-output relationship is fully
described by the cutoff points（mj，yj*）. We quantify
the quality of the model by admitting a certain level of
information granularity e assuming values in the unit
interval and yielding a granular （interval-valued）
outputs. The numeric values are made granular by
admitting the level e. The following alternative is
sought：

［max（0，yj*—e），min（1，yj*—e）］
（19）

This yields the granular output Y for given x

Y=∑
i=1

c

Ai (x)⊗［max（0，yj*—e），
min（1，yj*—e）］ （20）

⊗ stands for the interval multiplication. This
gives rise to the following interval Y=［y- ，y+］

where y- =∑
i=1

c

Ai ( x ) max （0， yi* —e） and y+=

∑
i=1

c

Ai ( x ) min（1，yi*+e）.

For any xk in the data set，we determine the
corresponding Yk and next compute coverage and
specificity，V = cov*sp. Evidently V is a function of
e so its value has to be optimized by searching for the
maximal value of V，eopt = arg maxeV（e）.

Progressing in this way with all the one-
dimensional models we obtain associated optimal
levels of information granularity，e1，e2，…，en. As a
result，for any x，these models return Y1，Y2，. . Yn.
This gives rise to the augmented architecture
illustrated in Fig. 12.

Noticeable is a fact that the arguments entering
the aggregation process are information granules
themselves. This implies，in light of the principle of
allocation of information granularity， the result
becomes an information granule of higher type than

the arguments being aggregated，viz. in this case so-
called granular intervals. They are intervals whose
bounds are information granules themselves. One can
denote the granular interval as Y~=［［y-- ，y-+］，

［y+-，y++］］where y-+ <y+-.
The detailed calculations concerning the granular

bounds of the information granule are carried out by
engaging lower bounds of Y1，Y2，…，Yn. Likewise
the computing of the upper bound of Y~ involves the
use of the upper bounds of Y1，Y2，…，Yn. In this
construction one has to make sure that the constraint
is satisfied.

8 Conclusions

In his paper，we formulated and delivered a
solution to the problem of granular aggregation of
multiview models and identified a sound argument
behind the emergence of the problem. It is
demonstrated that a highly dimensional problem can
fit well the developed framework. It has been
advocated that the aggregation mechanism producing
information granules helps quantify the quality of
fusion and reflect upon the diversity present among
the results produced by the individual models. The
principle of justifiable granularity becomes
instrumental in constructing information granules. It
is also shown that the elevation of the type of
information granularity（to type-1 or type-2）becomes
reflective of the increased level of abstraction of

Fig. 11 Piecewise relationships with interval-valued
cutoff points

Fig. 12 Augmented architecture of the model: note
elevation of type of information granularity
when progressing towards consecutive
phases of aggregation
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modeling.
There are several directions worth pursuing as

long-term objectives. While in this study， for
illustrative purposes，we engage interval calculus to
realize the discussed architecture，other alternatives
of formal frameworks，say fuzzy sets and rough sets，
are to be discussed. The general architecture remains
the same；however，some interesting conceptual and
computing insights could be gained in this way.
Architecturally，we studied a two-level topology：a
collection of one-dimensional rule-based models
followed by an aggregation module. An interesting
alternative could be to investigate low-dimensional
rules（with two or three conditions，which is still
feasible） and ensuing hierarchical structures along
with a granular quantification of the model.
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