大角度透视变形集装箱图像箱号识别方法
Container Code Recognition from Images with Large Perspective Deformation
投稿时间:2017-09-11  修订日期:2018-10-03
DOI:10.11908/j.issn.0253-374x.2019.02.018     稿件编号:    中图分类号:TP391
 
摘要点击次数: 182    全文下载次数: 128
中文摘要
      针对存在大角度透视变形的集装箱图像,提出一种新的集装箱箱号识别方法.首先对图像进行透视变换校正,然后利用深度卷积神经网络模型定位并识别出集装箱图像中的26个大写英文字母和10个阿拉伯数字,最后利用集装箱箱号的先验知识,通过级联决策规则从候选字符集中识别出集装箱箱号.此方法应用于重庆港集装箱1 035张实景图像,箱号识别精度达97%,基于NVIDIA GeForce GTX1080图形处理器加速的箱号识别速度为每秒2~5帧.
英文摘要
      A novel method is proposed in this paper to recognize the container code from the images with large perspective deformation. First, the images are rectified by perspective transformation. Then, 26 capitalized English characters and 10 Arabic numerals are located and recognized based on the deep convolution neural network model. Finally, container codes are recognized from the candidate character set by cascade decision rules based on the priori knowledge of container code. The proposed method is verified by 1035 container images taken in Chongqing Port. The result shows that the accuracy of container code recognition reaches 97%, and the speed based on NVIDIA GeForce GTX1080 GPU is 2 to 5 frames/sec.
HTML   查看全文  查看/发表评论  

您是第5377893位访问者
版权所有《同济大学学报(自然科学版)》
主管单位:教育部 主办单位:同济大学
地  址: 上海市四平路1239号 邮编:200092 电话:021-65982344 E-mail: zrxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计