改进的固定交通检测器缺失数据综合修复方法
Improved Modification Method of Missing Data for Location-specific Detector
投稿时间:2018-12-10  修订日期:2019-07-28
DOI:10.11908/j.issn.0253-374x.2019.10.013     稿件编号:    中图分类号:U491
 
摘要点击次数: 190    全文下载次数: 82
中文摘要
      基于检测器数据的时空相关性,为缺失数据修复模型动态地选择解释变量,在综合考虑检测器数据的周期性趋势和实时变化特性的基础上,提出了一种改进的缺失数据修复方法.对上海市南北高架的线圈流量数据进行数据修复精度测试.结果表明,相较于传统的支持向量回归(SVR)模型,该方法在3个测试检测器上的数据修复平均绝对误差分别减小了3.80%、3.40%、25.23%,并且在数据连续缺失1~10个时平均绝对百分比误差均低于6%.
英文摘要
      Based on the temporal and spatial correlation of detector data, the explanatory variables were dynamically selected for data repair model, and an improved modification method of missing data was proposed considering periodic trend and real-time variability comprehensively. The proposed method was assessed with the data of location specific detectors in Shanghai, China. Compared with support vector regression(SVR) model, the mean absolute error of three detectors are reduced by 3.80%, 3.40%, 25.23%, and the mean absolute percentage error is less than 6% under different data missing conditions.
HTML   查看全文  查看/发表评论  

您是第6207915位访问者
版权所有《同济大学学报(自然科学版)》
主管单位:教育部 主办单位:同济大学
地  址: 上海市四平路1239号 邮编:200092 电话:021-65982344 E-mail: zrxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计