基于栈式降噪自动编码器的建筑工程施工成本预测
De-noising Auto-encoder-based Construction Cost Prediction
投稿时间:2020-01-18  修订日期:2020-05-20
DOI:10.11908/j.issn.0253-374x.20019     稿件编号:    中图分类号:TU-9
 
摘要点击次数: 34    全文下载次数: 30
中文摘要
      以高层建筑工程项目为例,对建筑工程施工成本影响因素进行可靠地识别和合理量化。基于深度学习下的栈式降噪自动编码器理论,结合神经网络,构建非线性工程项目的施工成本预测模型。通过实际案例在Matlab平台上进行仿真预测,实证了该方法在预测建筑工程施工成本上的可靠性和精确性。
英文摘要
      High-rise building projects being taken as the example, a study was made of the influencing factors about the construction cost for a reliable identification and reasonable quantification. On the basis of the theory of de-noising auto-encoder under deep learning as well as the neural network, a construction cost prediction model was established for nonlinear engineering projects. A case study was made of the model by a simulation prediction on the Matlab platform, which verified the proposed method for predicting the cost of engineering projects.
HTML   查看全文  查看/发表评论  

您是第7196045位访问者
版权所有《同济大学学报(自然科学版)》
主管单位:教育部 主办单位:同济大学
地  址: 上海市四平路1239号 邮编:200092 电话:021-65982344 E-mail: zrxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计