基于目标优化的自动驾驶决策规划系统自动化测试方法
Automatic Testing Method Based on Optimization Algorithms for the Decision and Planning System of Autonomous Vehicles
投稿时间:2021-01-04  
DOI:10.11908/j.issn.0253-374x.21004     稿件编号:    中图分类号:U467.3;TP391.9
 
摘要点击次数: 89    全文下载次数: 49
中文摘要
      利用仿真技术的场景测试方法已成为国内外研究热点,其中如何在大量场景中找到有价值的关键场景至关重要。针对上述问题,基于优化搜索算法提出了一种面向决策规划系统的关键场景自动化测试方法,能够克服传统场景测试方法的盲目性,提高测试效率。基于决策规划系统硬件在环测试平台,验证了该方法的有效性,并对比了不同搜索算法的关键场景生成效果。实验结果表明,贝叶斯优化算法和遗传算法相比于随机搜索算法产生危险关键场景的数量提高了3.3倍和2.5倍,配合自动化测试手段,方法能够有效提高场景测试效率。
英文摘要
      Simulation-based scenario testing methods have drawn significant research interests, and how to find critical testing scenarios among the infinite number of concrete scenarios becomes a critical issue. To solve this problem, this paper proposed a critical scenario generation and automatic testing method for the decision and planning system based on optimization and search algorithms. The method was verified through a hardware-in-the-loop platform, and the efficiencies of different search algorithms were compared. The experiment results show that the number of critical scenarios generated by the Bayesian optimization algorithm and the genetic algorithm is increased by 3 times and 2.5 times, compared with the random search algorithm. Combined with automatic testing, the method can quite improve testing efficiency.
HTML   查看全文  查看/发表评论  

您是第9142207位访问者
版权所有《同济大学学报(自然科学版)》
主管单位:中华人民共和国教育部 主办单位:同济大学
地  址: 上海市四平路1239号 邮编:200092 电话:021-65982344 E-mail: zrxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计