文章快速检索    
  同济大学学报(自然科学版)  2017, Vol. 45 Issue (6): 930-935.  DOI: 10.11908/j.issn.0253-374x.2017.06.022
0

引用本文  

卞之豪. Endsk(2, 5)(Ωkⓧ5) 与Enduk(2, 5)(Ωkⓧ5) 的结构[J]. 同济大学学报(自然科学版), 2017, 45(6): 930-935. DOI: 10.11908/j.issn.0253-374x.2017.06.022.
BIAN Zhihao. On the Structure of Endsk(2, 5)(Ωkⓧ5) and Enduk(2, 5)(Ωkⓧ5)[J]. Journal of Tongji University (Natural Science), 2017, 45(6): 930-935. DOI: 10.11908/j.issn.0253-374x.2017.06.022

第一作者

卞之豪 (1990—),男,博士生,主要研究方向为代数群、量子群及其表示理论.E-mail:zhihaobian@163.com

文章历史

收稿日期:2016-05-27
Endsk(2, 5)(Ωkⓧ5) 与Enduk(2, 5)(Ωkⓧ5) 的结构
卞之豪     
同济大学 数学科学学院,上海 200092
摘要:利用张量空间Ωkⓧ5作为glk(2) 量子包络代数 (q-Schur代数) 的tilting模分解以及在n=2时已知的tilting模结构,给出Ωkⓧ5作为无穷小q-Schur代数及小q-Schur代数的模时Endsk(2, 5)(Ωkⓧ5) 与Enduk(2, 5)(Ωkⓧ5) 的维数、一组生成元以及主模分解.
关键词无穷小q-Schur代数    小q-Schur代数    Schur-Weyl对偶    
On the Structure of Endsk(2, 5)(Ωkⓧ5) and Enduk(2, 5)(Ωkⓧ5)
BIAN Zhihao     
School of Mathematical Sciences, Tongji University, Shanghai 200092, China
Abstract: By using the fact that tensor space Ωkⓧ5 can be written as a direct sum of tilting modules for the quantum enveloping algebra (q-Schur algebra) of glk(2) and the structure of tilting modules for n=2, we will determine the dimension, a set of generators and the decomposition of principal modules of Endsk(2, 5)(Ωkⓧ5) and Enduk(2, 5)(Ωkⓧ5), when Ωkⓧ5 is considered as a module of the infinitesimal q-Schur algebra and the little q-Schur algebra.
Key words: infinitesimal q-Schur algebra    little q-Schur algebra    Schur-Weyl duality    

无穷小量子群uk(n) 是由Lusztig在文献[1]中引入的一类重要的有限维Hopf代数,即经典模李代数理论中限制泛包络代数的量子化.q-Schur代数Uk(n, r) 作为量子群的商代数,是联系量子群与Hecke代数的桥梁.无穷小q-Schur代数sk(n, r) 与小q-Schur代数Uk(n, r) 分别在文献[2-3]中被引入, 对应于代数群glk(n) 的闭子群glk(n)1T与glk(n)1, 这里glk(n)1T分别为glk(n) 的Frobenius核与一个极大环面.因为EndUk(n, r)(Ωkⓧr)=Enduk(n)(Ωkr),它将是研究无穷小情形下Schur-Weyl对偶的重要工具.这里k是一个特征为零包含l(奇数) 次单位根ε的域,其中l≥3(本文中只需考虑l=3的情形).uk(2) 是glk(2) 在k上的无穷小量子群, Ωk是glk(2) 在k上的自然表示.本文研究Endsk(2, 5)(Ωkⓧ5) 与Enduk(2, 5)(Ωkⓧ5) 的结构,给出它们的维数、一组生成元以及正则分解,希望在接下来的研究中得到更一般的结果.

1 无穷小q-Schur代数与小q-Schur代数

gl (2) 在域Q(v) (v为一不定元) 上的量子包络代数U=U(2) 有如下生成元:

$ E、F、{K_i}、K_i^{-1}, 1 \le i \le 2 $

满足如下关系式:

(1) KiKj=KjKi, KiKi-1=1.

(2) K1E=vEK1, K2E=v-1EK2.

(3) K1F=v-1FK1, K2E=vFK2.

(4) EF-FE=$\frac{{{K_1}K_2^{-1}-K_1^{-1}{K_2}}}{{v-{v^{-1}}}}$.

U(2) 为Hopf代数,其余乘在生成元上的定义为

$ \begin{array}{l} \Delta (E) = E \otimes {K_1}K_2^{-1} + 1 \otimes E\\ \Delta (F) = F \otimes 1 + K_1^{-1}{K_2} \otimes F\\ \;\;\;\;\;\;\;\Delta ({K_i}) = {K_i} \otimes {K_i} \end{array} $

Z=Z[v, v-1],如文献[1]中所述,记UZ(2) 为U(2) 中由E(m)F(m)Ki±1以及$\left[{\begin{array}{*{20}{c}} {{K_i}; 0}\\ t \end{array}} \right]$生成的Z-子代数,其中tm为一正整数,则

$ \begin{array}{l} {E^{(m)}} = \frac{{{E^m}}}{{[m]!}}, {F^{(m)}} = \frac{{{F^m}}}{{[m]!}}, \\ \left[{\begin{array}{*{20}{c}} {{K_i};c}\\ t \end{array}} \right] = \prod\limits_{s = 1}^t {\frac{{{K_i}{v^{c -s + 1}} -K_i^{ -1}{v^{ - c + s - 1}}}}{{{v^s} - {v^{ - s}}}}} \end{array} $

k是一个特征为零包含l(奇数) 次单位根ε的域,将v赋值为ε, 则k可视为Z-模.设Uk(2)=UZ(2)ⓧk,仍用EFKi±1表示它们在Uk(2) 中的像.记${\tilde u_k}$(2) 为Uk(2) 中由EFKi±1生成的子代数,则uk(2)=${\tilde u_k}$(2)/(K1l-1, K2l-1) 即为gl (2) 在k上的无穷小量子群.

Ω为基{ωi|1≤i≤2}张成的自由Z-模,记ΩQ(v)=ΩZQ(v), Ωk=ΩZk,则U(2) 在ΩQ(v)上有自然作用b=δ2, bωb-1, a=δ1, aωa+1, Kaωb=vδa, bωb.上述模结构显然可诱导至域k, 因此由Uk(2) 的余乘可定义Uk(2) 到Ωkⓧr上的作用, 同时得到代数同态ζr:Uk(2)→Endk(Ωkⓧ5), 而Uk(2, r):=ζr(Uk(2)) 即为域k上的q-Schur代数.文献[3]中uk(2, r):=ζr(${\tilde u_k}$(2))=ζr(uk(2)) 即为小q-Schur代数.

e=ζr(E), f=ζr(F), Ki=ζr(Ki), 其中1≤i≤2.另设${k_\lambda } = \prod\limits_{i = 1}^2 {\left[{\begin{array}{*{20}{c}} {{K_i}; 0}\\ {{\lambda _i}} \end{array}} \right]} $,其中λΛ(2, r):={λN2|λ1+λ2=r}.对任意正整数m, 记Zm=Z/mZ,定义

$ ^-:{Z^2} \to {({z_l})^2} $

为由(j1, j2)=(j1, j2)(j1j2Z) 决定的映射.

Λ(2, r)={λ-∈(Zl)2|λΛ(2, r)},对λ-∈(Zl)2, 定义

$ {P_{\bar \lambda }} = \left\{ \begin{array}{l} \sum\limits_{\mu \in \mathit{\Lambda }{\rm{(2, }}r{\rm{), }}\bar \mu = \bar \lambda } {{k_\mu }, \;\;\;\bar \lambda \in \overline {\mathit{\Lambda }{\rm{(2, }}r{\rm{)}}} } \\ 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;其他情形 \end{array} \right. $

UZ(0)(2, r) 和uZ(0)(2, r) 分别表示UZ(2, r) 和uZ(2, r) 零部分构成的子代数.

定理1[3-4] 集合{kλ|λΛ(2, r)} (resp. {Pλ|λ-∈Λ(2, r)}) 为UZ(0)(2, r)(resp. uZ(0)(2, r)) 的一组完备的本原正交幂等元 (因此也是一组基).特别地, $1 = \sum\limits_{\lambda \in \mathit{\Lambda }(2, r)} {{k_\lambda } = } \sum\limits_{\bar \lambda \in \overline {\mathit{\Lambda }(2, r)} } {{k_{\bar \lambda }}}.$.

sk(2, r) 为Uk(2, r) 中由uk(2, r) 及$\left[{\begin{array}{*{20}{c}} {{k_i}; 0}\\ t \end{array}} \right]$生成的k-子代数,即是文献[2]中引入的无穷小q-Schur代数.

2 张量空间Ωkⓧ5的模结构

首先给出n=2时tilting模T(λ) 与Weyl模Δ(λ) (q-Schur代数拟遗传性质中的标准模) 的相关结果.

引理1(文献[5]3.4节) 设λ=(λ1, λ2) 为支配权.如果λ1-λ2l-1或λ1-λ2≡-1(mod l)(即λ为Steinberg权),则T(λ)=Δ(λ).如果λ1-λ2>l-1且λ1-λ2=bl+a, 0≤a<l-1,则T(λ) 有如下滤过:

$ 0 \subseteq \Delta (\lambda ) \subseteq T(\lambda ) $

并且T(λ)/Δ(λ)≅Δ(μ), μ=(λ1-(a+1),λ2+(a+1)).

引理2 设λ=(λ1, λ2) 为支配权.如果λ1-λ2≤l-1或λ1-λ2≡-1(mod l)(即λ为Steinberg权), 则Δ(λ)=L(λ).如果λ1-λ2>l-1且λ1-λ2=bl+a, 0≤a < l-1,则Δ(λ) 有如下滤过:

$ 0 \subseteq L(\mu ) \subseteq \Delta (\lambda ) $

并且Δ(λ)/L(μ)≅L(λ), μ=(λ1-(a+1),λ2+(a+1)).

证明 只需证明λ1-λ2>l-1且λ1-λ2=bl+a, 0≤a < l-1的情形.由Weyl模Δ(λ) 的定义,其有如下形式特征标:

$ \begin{array}{l} ch\Delta \left( \lambda \right) = e\left( {bl + a} \right) + e\left( {bl + a-2} \right) + \cdots + {\rm{ }}\\ \;\;\;\;\;\;\;e\left( {-bl-a + 2} \right) + e\left( { - bl - a} \right) \end{array} $

由Steinberg张量积定理,L(λ)≅L(a)ⓧL(lb), L(bl-a-2)≅L(l-a-2)ⓧL(l(b-1)), 注意L(λ) 即L(λ1-λ2),这里将用划分参数化的单模与用一个整数参数化的单模混用.因此ch L(λ)=$\sum\limits_{i = 0}^b {\sum\limits_{j = 0}^a {e ((b-2i) l + (a-2j)), {\rm{ch}}\; L (bl-a-2)} } $=$\sum\limits_{i = 0}^{b-1} {\sum\limits_{j = 0}^{l-a-2} {e ((b-1-2i) l + (l-a-2-2j))} } $,不难看出ch Δ(λ)=ch L(λ)+ch L(bl-a-2),引理成立.

作为glk(2) 的模,Ωk≅Δ(1, 0)≅T(1, 0),而由文献[5]中3.3节,tilting模关于张量积运算封闭,因此作为Uk(2, 5) 的模,Ωkⓧ5有如下tilting模分解:

$ \mathit{\Omega }_k^{ \otimes 5} \cong {d_{(5, 0)}}T\left( {5, 0} \right) + {d_{(4, 1)}}T\left( {4, 1} \right) + {d_{(3, 2)}}T\left( {3, 2} \right). $

先取定l=3.

此时,由引理1和2,T(5, 0)≅L(5, 0), T(3, 2)≅L(3, 2),而T(4, 1) 有如下滤过:

$ 0 \subseteq {M_1} \subseteq {M_2} \subseteq T(4, 1) $

其中,M1L(3, 2), M2≅Δ(4, 1), M2/M1L(4, 1), T(4, 1)/M2L(3, 2).

引理3 上述Ωkⓧ5的tilting模分解的重数d(5, 0)=1, d(4, 1)=4, d(3, 2)=1.

证明 由上述T(λ) 的模结构,可得它们的特征标如下:

$ \begin{array}{l} {\rm{ch }}T\left( {5, 0} \right) = e\left( {\left( {5, 0} \right)} \right) + e\left( {\left( {4, 1} \right)} \right) + e\left( {\left( {3, 2} \right)} \right) + \\ \;\;\;\;\;\;e\left( {\left( {2, 3} \right)} \right) + e\left( {\left( {1, 4} \right)} \right) + e\left( {\left( {0, 5} \right)} \right){\rm{ }}\\ {\rm{ch }}T\left( {4, 1} \right) = e\left( {\left( {4, 1} \right)} \right) + 2e\left( {\left( {3, 2} \right)} \right) + 2e\left( {\left( {2, 3} \right)} \right) + \\ \;\;\;\;\;e\left( {\left( {1, 4} \right)} \right){\rm{ }}\\ {\rm{ch }}T\left( {3, 2} \right) = e\left( {\left( {3, 2} \right)} \right) + e\left( {\left( {2, 3} \right)} \right) \end{array} $

而dim (Ωkⓧ5)(a, 5-a)=$\left (\begin{array}{l} 5\\ a \end{array} \right)$,因此可依次计算

$ \begin{array}{l} {d_{(5, 0)}} = \left( \begin{array}{l} 5\\ 5 \end{array} \right) = 1\\ {d_{(4, 1)}} = \left( \begin{array}{l} 5\\ 4 \end{array} \right)-{d_{(5, 0)}}{\rm{dim}}{\left( {T\left( {5, 0} \right)} \right)_{(4, 1)}} = 4\\ {d_{(3, 2)}} = \left( \begin{array}{l} 5\\ 3 \end{array} \right)-{d_{(5, 0)}}{\rm{dim}}{\left( {T\left( {5, 0} \right)} \right)_{(3, 2)}}-\\ \;\;\;\;\;\;\;\;\;\;{d_{(4, 1)}}{\rm{dim}}{\left( {T\left( {4, 1} \right)} \right)_{(3, 2)}} = 1 \end{array} $

引理4 上述tilting模T(λ) 间的代数同态的维数如下:

(1) d(3, 2)(λ)=dim homUk(2, 5)(T(3, 2), T(λ))=$\left\{ \begin{array}{l} 1, \lambda = (3, 2) 或\lambda = (4, 1)\\ 0, \lambda = (5, 0) \end{array} \right.$

${\hat d_{(3, 2)(\lambda)}}$=dim homsk(2, 5)(T(3, 2), T(λ))=dim homUk(2, 5)(T(3, 2), T(λ))

d(3, 2)(λ)(1)=dim homuk(2, 5)(T(3, 2), T(λ))=dim homUk(2, 5)(T(3, 2), T(λ))

(2) d(4, 1)(λ)=dim homUk(2, 5)(T(4, 1), T(λ))=$\left\{ \begin{array}{l} 1, \; \; \lambda = (3, 2)\\ 2, \; \lambda = (4, 1)\\ 0, \; \lambda = (5, 0) \end{array} \right.$

${\hat d_{(4, 1)(\lambda)}}$=dim homsk(2, 5)(T(4, 1), T(λ))=dim homUk(2, 5)(T(4, 1), T(λ))

d(4, 1)(λ)(1)=dim homuk(2, 5)(T(4, 1), T(λ))=dim homUk(2, 5)(T(4, 1), T(λ))

(3) d(5, 0)(λ)=dim homUk(2, 5)(T(5.0), T(λ))=$\left\{ \begin{array}{l} 1, \lambda = (5, 0)\\ 0, \lambda = (3, 2) 或\lambda = (4, 1) \end{array} \right.$

${\hat d_{(5, 0)(\lambda)}}$=dim homsk(2, 5)(T(5.0), T(λ))=$\left\{ \begin{array}{l} 2, \lambda = (5, 0)\\ 0, \lambda = (3, 2) 或\lambda = (4, 1) \end{array} \right.$

d(5, 0)(λ)(1)=dim homuk(2, 5)(T(5.0), T(λ))=$\left\{ \begin{array}{l} 4, \lambda = (5, 0)\\ 0, \lambda = (3, 2) 或\lambda = (4, 1) \end{array} \right.$

证明 首先考虑T(λ) 作为Uk(2, 5)-模的情形.由上文的讨论,T(5, 0)≅L(5, 0),T(3, 2)≅L(3, 2), soc T(4, 1)≅L(3, 2), T(4, 1)/Rad T(4, 1)≅L(3, 2),不难看出它们间的代数同态的维数如引理所述.由Steinberg张量积定理,有

(1) L(3, 2)|sk(2, 5)${\hat L_1}$(3, 2), L(3, 2)|uk(2, 5)L1(3, 2).

(2) L(4, 1)|sk(2, 5)L(0)ⓧL(3)|sk(2, 5)k(3)k(-3), L(4, 1)|uk(2, 5)L(0)ⓧL(3)|uk(2, 5)k(0)k(0).

(3) L(5, 0)|sk(2, 5)${\hat L_1}$(5, 0)⊕${\hat L_1}$(2, 3), L(5, 0)|uk(2, 5)L1(2)⊕L1(2).

这里${\hat L_1}$(λ) 和L1(λ) 分别表示glk(2)1T和glk(2)1对应的单模 (参看文献[5]第三章),k(α)αZ表示权为α的一维模空间.同理可得T(λ) 限制在sk(2, 5), uk(2, 5) 上的情形.因此,可以分别得到EndUk(2, 5)(Ωkⓧ5)、Endsk(2, 5)(Ωkⓧ5) 与Enduk(2, 5)(Ωkⓧ5) 的维数如下:

(1) dim EndUk(2, 5)(Ωkⓧ5)=$\sum\limits_{\lambda, \mu \in \mathit{\Lambda }(2.5)} {{d_\lambda }{d_\mu }{d_{(\lambda)(\mu)}}} = 42$.

(2) dim Endsk(2, 5)(Ωkⓧ5)=$\sum\limits_{\lambda, \mu \in \mathit{\Lambda }(2.5)} {{d_\lambda }{d_\mu }{{\hat d}_{(\lambda)(\mu)}}} = 43$.

(3) dim Enduk(2, 5)(Ωkⓧ5)=$\sum\limits_{\lambda, \mu \in \mathit{\Lambda }(2.5)} {{d_\lambda }{d_\mu }d_{(\lambda)(\mu)}^{(1)}} = 45$.

l>5时,Uk(2, 5)=sk(2, 5)=uk(2, 5),此时EndUk(2, 5)(Ωkⓧ5)=Enduk(2, 5)(Ωkⓧ5) 同构于Hecke代数H(5) 模去其作用于张量空间Ωkⓧ5上的核后所得的商代数,并且T(5, 0)≅L(5, 0), T(4, 1)≅L(4, 1), T(3, 2)≅L(3, 2).与l=3时的讨论相类似,有d(5, 0)=1, d(4, 1)=4, d(3, 2)=5, 并且d(λ)(μ)=δ(λ)(μ).因此可得Enduk(2, 5)(Ωkⓧ5) 半单且dim Enduk(2, 5)(Ωkⓧ5)=42.

l=5时,由上述引理,T(4, 1)≅L(4, 1), T(3, 2)≅L(3, 2),而T(5, 0) 有如下滤过:

$ 0 \subseteq {M_1} \subseteq {M_2} \subseteq T(5, 0) $

其中M1L(4, 1), M2Δ(5, 0).同理可得d(5, 0)=1, d(4, 1)=3, d(3, 2)=5并且d(λ)(μ)=${\hat d_{(\lambda)(\mu)}}$=d(λ)(μ)(1).因此可得EndUk(2, 5)(Ωkⓧ5)=Enduk(2, 5)(Ωkⓧ5) 并且dim Enduk(2, 5)(Ωkⓧ5)=42.事实上,对任意的满足r < 2l-1的rl,均有EndUk(2, r)(Ωkⓧr)=Enduk(2, r)(Ωkr).

以下两节取定l=3.

3 Endsk(2, 5)(Ωkⓧ5) 的结构

$\hat T (\lambda)$:=T(λ)|sk(2, 5)Ωkⓧ5作为sk(2, 5) 的表示空间有如下分解:

$ \begin{array}{l} \mathit{\Omega }_k^{ \otimes 5}\left| {_{{s_k}(2, 5)}} \right. = \mathop \oplus \limits_{i = 1}^4 \hat T{(4, 1)^{(i)}} \oplus \hat T(3, 2) \oplus \\ \;\;\;\;\;\;\;\;\;\;\;{{\hat L}_1}(5, 0) \oplus {{\hat L}_1}(2, 3) \end{array} $

定义1 设M$\mathit{\Omega }_k^{ \otimes 5}\left| {_{{s_k}(2, 5)}} \right.$在上述分解中的某一直和项,分别定义Endsk(2, 5)(Ωkⓧ5) 中元素s(4, 1)(i)(1≤i≤4)、s(3, 2)η(5, 0)(1)η(5, 0)(2)t(4, 1)(3, 2)t(3, 2)(4, 1),如下所示:

(1) s(4, 1)(i)(M)=$\left\{ \begin{array}{l} \hat T{(4, 1)^{(i + 1)}}, \; \; M = \hat T{(4, 1)^{(i)}}, 1 \le i \le 3\\ \hat T{(4, 1)^{(1)}}, \; \; \; \; M = \hat T{(4, 1)^4}, i = 4\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(2) s(3, 2)(M)=$\left\{ \begin{array}{l} \hat T (3, 2), \; \; \; M = \hat T (3, 2)\\ 0, \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(3) η(5, 0)(j)(M)=$\left\{ \begin{array}{l} {{\hat L}_1}(5, 0), \; \; \; \; M = {{\hat L}_1}(5, 0), j = 1\\ {{\hat L}_1}(2, 3), \; \; \; M = {{\hat L}_1}(2, 3), j = 2\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(4) t(4, 1)(3, 2)(M)=$\left\{ \begin{array}{l} \hat T (3, 2), \; \; \; M = \hat T{(4, 1)^{(1)}}\\ 0, \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(5) t(3, 2)(4, 1)(M)=$\left\{ \begin{array}{l} \hat T{(4, 1)^{(1)}}, \; \; \; M = \hat T (3, 2)\\ 0, \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

为方便之后的讨论,定义s(4, 1)(i+4):=s(4, 1)(i), s(4, 1)(i)=s(4, 1)(i+3)s(4, 1)(i+2)s(4, 1)(i+1)s(4, 1)(i).

定理2 定义1中给出的元素为Endsk(2, 5)(Ωkⓧ5) 的一组生成元.

证明 记S(4, 1)为由s(4, 1)(i)(1≤i≤4) 生成的子代数.由引理4及定义1,直和项$\hat T (4, 1)$(i)$\hat T (4, 1)$(j)间的同构形如ks(4, 1)(j-1)s(4, 1)(i+1)s(4, 1)(i)$\hat T (4, 1)$(i)$\hat T (3, 2)$的满同态形如kt(4, 1)(3, 2)s(4, 1)(4)s(4, 1)(i+1)s(4, 1)(i), $\hat T (4, 1)$(i)到soc $\hat T (4, 1)$(j)满同态形如ks(4, 1)(j-1)s(4, 1)(i+1)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2)s(4, 1)(4)s(4, 1)(i+1)s(4, 1)(i).因此,homsk(2, 5)($\mathop \oplus \limits_{i = 1}^4 \hat T{(4, 1)^{(i)}}$, Ωkⓧ5) 中的元素均可由形如st(4, 1)(3, 2)sst(3, 2)(4, 1)t(4, 1)(3, 2)s的元素线性张成, 其中sS(4, 1).

同理,homsk(2, 5)($\hat T (3, 2)$, Ωkⓧ5) 中元素均可由形如s(3, 2)st(3, 2)(4, 1)的元素线性张成,sS.因此{s(4, 1)(i)(1≤i≤4), s(3, 2), η(5, 0)(1), η(5, 0)(2), t(4, 1)(3, 2), t(3, 2)(4, 1)}为Endsk(2, 5)(Ωkⓧ5) 的一组生成元.

同样由上述生成元的定义,可得下述引理.

引理5 Endsk(2, 5)(Ωkⓧ5) 的上述生成元满足如下关系式,其中xy为生成元中某一元素.

(1) s(4, 1)(i)s(4, 1)(i)=s(4, 1)(i); s(4, 1)(i)s(4, 1)(j)=0, ij+1;xs(4, 1)(i)=0, xt(4, 1)(3, 2), i≠4;s(4, 1)(i)y=0, yt(3, 2)(4, 1), i≠1.

(2) s(3, 2)t(4, 1)(3, 2)=t(4, 1)(3, 2)s(4, 1)(1)=t(4, 1)(3, 2); xt(4, 1)(3, 2)=0,xs(3, 2), t(3, 2)(4, 1); t(4, 1)(3, 2)y=0,ys(4, 1)(4).

(3) t(3, 2)(4, 1)s(3, 2)=s(4, 1)(1)t(3, 2)(4, 1)=t(3, 2)(4, 1); xt(3, 2)(4, 1)=0,xs(4, 1)(1); t(3, 2)(4, 1)y=0,ys(3, 2), t(4, 1)(3, 2).

(4) (s(3, 2))2=s(3, 2); xs(3, 2)=0,xs(3, 2), t(3, 2)(4, 1); s(3, 2)y=0,ys(3, 2), t(4, 1)(3, 2).

(5) (η(5, 0)(j))2=η(5, 0)(j); (5, 0)(j)=η(5, 0)(j)x=0,xη(5, 0)(j).

由定义1及上述关系式,有 (s(4, 1)(i))2=s(4, 1)(i), (s(3, 2))2=s(3, 2), (η(5, 0)(j))2=η(5, 0)(j),并且s(4, 1)(i)∈homsk(2, 5)($\hat T (4, 1)$(i), $\hat T (4, 1)$(i)), s(3, 2)∈homsk(2, 5)($\hat T (3, 2)$, $\hat T (3, 2)$), 以及η(5, 0)(1)∈homsk(2, 5)(${\hat L_1}$(5, 0), ${\hat L_1}$(5, 0)), η(5, 0)(2)∈homsk(2, 5)(${\hat L_1}$(2, 3), ${\hat L_1}$(2, 3)),因此Endsk(2, 5)(Ωkⓧ5) 有如下极小单位分解:

$ 1 = \sum\limits_{i = 1}^4 {s_{(4, 1)}^{(i)}} + s(3, 2) + {\eta _{(5, 0)(1)}} + {\eta _{(5, 0)(2)}} $

P(4, 1)(i)=Endsk(2, 5)(Ωkⓧ5s(4, 1)(i), P(3, 2)=Endsk(2, 5)(Ωkⓧ5s(3, 2), P(5, 0)(j)=Endsk(2, 5)(Ωkⓧ5η(5, 0)(j), 同时R(λ)(i)=Rad P(λ)(i), U(λ)(i)=P(λ)(i)/R(λ)(i).注意若λ不是Steinberg权,则P(λ)(i)P(λ)(j).

定理3 Endsk(2, 5)(Ωkⓧ5) 的射影模P(4, 1)(1)P(3, 2)P(5, 0)(1)P(5, 0)(2)的结构如下:

(1) (R(4, 1)(1))3=0, (R(4, 1)(1))2=spank{t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2)}, R(4, 1)(1)=spank{t(4, 1)(3, 2)}⊕(R(4, 1)(1))2, P(4, 1)(1)=spank{s(4, 1)(1), s(4, 1)(1), s(4, 1)(2)s(4, 1)(1), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)}⊕R(4, 1)(1), 并且 (R(4, 1)(1))2U(4, 1)(1), R(4, 1)(1)/(R(4, 1)(1))2U(3, 2)(1).

(2) (R(3, 2)(1))2=0, R(3, 2)(1)=spank{t(3, 2)(4, 1), s(4, 1)(1)t(3, 2)(4, 1), s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)}, P(3, 2)(1)=spank{s(3, 2)}⊕R(3, 2)(1), 并且R(3, 2)(1)U(4, 1)(1).

(3) R(5, 0)(1)=R(5, 0)(2)=0, P(5, 0)(1)=spank{η(5, 0)(1)}, P(5, 0)(2)=spank{η(5, 0)(2)}.

证明 给出定理3(1) 的证明,同理可得定理3(2) 和 (3).s(4, 1)(1)作为左Endsk(2, 5)(Ωkⓧ5) 模P(4, 1)(1)的生成元,由定义1和引理5、定理3(1) 中张成P(4, 1)(1)的元素穷举了所有可由s(4, 1)(1)生成的Endsk(2, 5)(Ωkⓧ5) 的基元素 (它是homsk(2, 5)($\hat T (4, 1)$(1), Ωkⓧ5) 的一组基).由引理5 (1), 可得{s(4, 1)(1), s(4, 1)(1), s(4, 1)(2)s(4, 1)(1), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)}中的元素可以相互生成,同理{t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2)}中的元素也可以相互生成.而由引理5(2) 和 (3), s(4, 1)(1)可生成t(4, 1)(3, 2)t(4, 1)(3, 2)可生成t(3, 2)(4, 1)t(4, 1)(3, 2), 反之不行,因此分别得到 (R(4, 1)(1))2R(4, 1)(1)P(4, 1)(1)如定理所述的一组基.余下的结论就容易得到了.

4 Enduk(2, 5)(Ωkⓧ5) 的结构

r=5(r较小) 时,Enduk(2, 5)(Ωkⓧ5) 与Endsk(2, 5)(Ωkⓧ5) 的结构十分类似,仿照上一节的内容给出结论,证明是完全类似的.

记T(1)(λ):=T(λ)|uk(2, 5)Ωkⓧ5作为uk(2, 5) 的表示空间有如下分解:

$ \begin{array}{l} \mathit{\Omega }_k^{ \otimes 5}\left| {_{{s_k}(2, 5)}} \right. = \mathop \oplus \limits_{i = 1}^4 {{\hat T}^{(1)}}{(4, 1)^{(i)}} \oplus {T^{(1)}}(3, 2) \oplus \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{L_1}{(2)^{(1)}} \oplus {L_1}{(2)^{(2)}} \end{array} $

定义2 设MΩkⓧ5|uk(2, 5)的上述分解中的某一直和项,分别定义Enduk(2, 5)(Ωkⓧ5) 中元素s(4, 1)(i)(1≤i≤4)、s(3, 2)θ(5, 0)(1)θ(5, 0)(2)t(4, 1)(3, 2)t(3, 2)(4, 1),如下所示:

(1) s(4, 1)(i)(M)=$\left\{ \begin{array}{l} {T^{(1)}}{(4, 1)^{(i + 1)}}, \; \; M = {T^{(1)}}{(4, 1)^{(i)}}, 1 \le i \le 3\\ {T^{(1)}}{(4, 1)^{(1)}}, \; \; \; M = {T^{(1)}}{(4, 1)^{(4)}}, i = 4\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(2) s(3, 2)(M)=$\left\{ \begin{array}{l} {T^{(1)}}(3, 2), \; \; M = {T^{(1)}}(3, 2)\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(3) θ(5, 0)(j)(M)=$\left\{ \begin{array}{l} {L_1}{(2)^{(2)}}, \; \; \; M = {L_1}{(2)^1}, j = 1\\ {L_1}{(2)^{(1)}}, \; \; \; M = {L_1}{(2)^2}, j = 2\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(4) t(4, 1)(3, 2)(M)=$\left\{ \begin{array}{l} {T^{(1)}}(3, 2), \; \; \; \; M = {T^{(1)}}{(4, 1)^{(1)}}\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

(5) t(3, 2)(4, 1)(M)=$\left\{ \begin{array}{l} {T^{(1)}}{(4, 1)^{(1)}}, \; \; \; \; M = {T^{(1)}}(3, 2)\\ 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; 其他情形\end{array} \right.$

附注1 注意事实上{s(4, 1)(i)(1≤i≤4), s(3, 2), t(4, 1)(3, 2), t(3, 2)(4, 1)}EndUk(2, 5)(Ωkⓧ5),可直接验证这些元素与e(3)f(3)kλ交换.

类似地定义θ(5, 0)(j+2)=θ(5, 0)(j), θ(5, 0)(j)=θ(5, 0)(j+1)θ(5, 0)(j).

引理6 定义2中给出的元素为Enduk(2, 5)(Ωkⓧ5) 的一组生成元且满足如下关系式:

(1) s(4, 1)(i)s(4, 1)(i)=s(4, 1)(i); s(4, 1)(i)s(4, 1)(j)=0,ij+1;xs(4, 1)(i)=0,xt(4, 1)(3, 2), i≠4;s(4, 1)(i)y=0,yt(3, 2)(4, 1), i≠1.

(2) s(3, 2)t(4, 1)(3, 2)=t(4, 1)(3, 2)s(4, 1)(1)=t(4, 1)(3, 2); xt(4, 1)(3, 2)=0,xs(3, 2), t(3, 2)(4, 1); t(4, 1)(3, 2)y=0,ys(4, 1)(4).

(3) t(3, 2)(4, 1)s(3, 2)=s(4, 1)(1)t(3, 2)(4, 1)=t(3, 2)(4, 1); xt(3, 2)(4, 1)=0,xs(4, 1)(1); t(3, 2)(4, 1)y=0,ys(3, 2), t(4, 1)(3, 2).

(4) (s(3, 2))2=s(3, 2); xs(3, 2)=0,xs(3, 2), t(3, 2)(4, 1); s(3, 2)y=0,ys(3, 2), t(4, 1)(3, 2).

(5) θ(5, 0)(j)θ(5, 0)(j)=θ(5, 0)(j); (5, 0)(j)=θ(5, 0)(j)x=0,xθ(5, 0)(j+1).

由定义2及上述关系式,Enduk(2, 5)(Ωkⓧ5) 有如下极小单位分解:

$ 1 = \sum\limits_{i = 1}^4 {s_{(4, 1)}^{(i)}} + s(3, 2) + {\theta _{(5, 0)(1)}} + {\theta _{(5, 0)(2)}} $

仍记P(4, 1)(i)=Endsk(2, 5)(Ωkⓧ5s(4, 1)(i), P(3, 2)=Endsk(2, 5)(Ωkⓧ5s(3, 2), P(5, 0)(j)=Endsk(2, 5)(Ωkⓧ5θ(5, 0)(j).同时R(λ)(i)=Rad P(λ)(i), U(λ)(i)=P(λ)(i)/R(λ)(i).注意P(λ)(i)P(λ)(j).

定理4 Enduk(2, 5)(Ωkⓧ5) 的射影模P(4, 1)(1)P(3, 2)P(5, 0)(1)结构如下:

(1) (R(4, 1)(1))3=0, (R(4, 1)(1))2=spank{t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)t(4, 1)(3, 2)},R(4, 1)(1)=spank{t(4, 1)(3, 2)}⊕(R(4, 1)(1))2; P(4, 1)(1)=spank{s(4, 1)(1), s(4, 1)(1), s(4, 1)(2)s(4, 1)(1), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)}⊕R(4, 1)(1),并且 (R(4, 1)(1))2U(4, 1)(1), R(4, 1)(1)/(R(4, 1)(1))2U(3, 2)(1).

(2) (R(3, 2)(1))2=0, R(3, 2)(1)=spank{t(3, 2)(4, 1), s(4, 1)(1)t(3, 2)(4, 1), s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1), s(4, 1)(3)s(4, 1)(2)s(4, 1)(1)t(3, 2)(4, 1)},P(3, 2)(1)=spank{s(3, 2)}⊕R(3, 2)(1),并且R(3, 2)(1)U(4, 1)(1).

(3) R(5, 0)(1)=0, P(5, 0)(1)=spank{θ(5, 0)(1), θ(5, 0)(1)}.

参考文献
[1]
LUSZTIG G. Finite dimensional Hopf algebras arising from quantized universal enveloping algebras[J]. Journal of American Mathematical Society, 1990, 3: 257
[2]
COZ A G. On some applications of infinitesimal methods to quantum groups and related algebras [D]. London: London Univeristy, 1997.
[3]
DU J, FU Q, Wang J-P. Infinitesimal quantum gln and little q-Schur algebras[J]. Journal of Algebra, 2005, 287: 199 DOI:10.1016/j.jalgebra.2005.01.040
[4]
DOTY S, GIAQUINTO A. Presenting Schur algebras[J]. International Mathematics Research Notices, 2002, 36: 1907
[5]
DONKIN S. The q-Schur algebra: London mathematical society lecture note series 253[M]. New York: Cambridge University Press, 2010