﻿ 重型装甲车乘员舱热环境优化分析
 文章快速检索
 同济大学学报(自然科学版)  2017, Vol. 45 Issue (9): 1390-1398.  DOI: 10.11908/j.issn.0253-374x.2017.09.020 0

### 引用本文

LIU Yan, SUN Bolin, SHI Honglei, QI Zishu. Optimization on Thermal Environment of Passenger Compartment of a Heavy Vehicle[J]. Journal of Tongji University (Natural Science), 2017, 45(9): 1390-1398. DOI: 10.11908/j.issn.0253-374x.2017.09.020.

### 文章历史

1. 吉林大学 汽车仿真与控制国家重点实验室，吉林 长春 130025;
2. 吉林大学 汽车工程学院，吉林 长春 130025;
3. 哈尔滨固泰电子有限责任公司，黑龙江 哈尔滨 150060;
4. 吉林建筑大学 市政与环境工程学院，吉林 长春 130118

Optimization on Thermal Environment of Passenger Compartment of a Heavy Vehicle
LIU Yan1,2, SUN Bolin1,2, SHI Honglei3, QI Zishu4
1. Sate Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China;
2. College of Automotive Engineering, Jilin University, Changchun 130025, China;
3. Harbin Gutai Electronic Co. Ltd., Harbin 150060, China;
4. College of Municipal and Environmental Engineering, Jilin University of Construction, Changchun 130118, China
Abstract: A heating system and a reasonable structure of the air duct structure are designed to achieve the purpose of improving the passenger compartment thermal environment. The structural parameters of the heating system are optimized. Aiming at the four factors such as the chamfer radius of the air outlet, the angle between duct axis and X axis, the height of the outlet and the type of return air grille on the thermal environment of passenger compartment, according to the orthogonal test theory, the optimal design scheme is determined that the chamfer radius of the air outlet is 60 mm, the angle between duct axis and X axis is 110°, the height of the outlet is 570 mm, the type of return air grille is Z-6-280×5. The computational fluid dynamics (CFD) simulation of the optimal design is carried out, the temperature of the heads and the feet of the driver, passenger 1 and passenger 2 are monitored, the result shows that the heating system of the optimal design can greatly improve the thermal sensation of the driver, passenger 1 and passenger 2.
Key words: passenger compartment    thermal environment    numerical simulation    orthogonal test    optimal design

(1) 设计一种采暖系统，利用燃油预热器对发动机的冷却水进行预热，将高温冷却水送入到采暖系统的换热器内，为了保证采暖系统的热风充分的被利用，设计了一种两通道的风道结构形式.

(2) 对某重型车乘员舱内部进行结构简化，进行三维建模，对乘员舱的采暖系统进行结构、参数的优化设计，利用正交设计试验，分析出风口倒角半径、风道轴线与X轴角度、出风口高度、回风口形式这四个试验因素对乘员舱内监测点温度值的影响，选择最优水平.对结构优化后的乘员舱内的热环境进行数值模拟.

1 重型车乘员舱采暖系统优化设计 1.1 采暖系统设计

 图 1 原采暖系统 Fig.1 The original heating system

 图 2 复合式采暖系统 Fig.2 Combined heating system

1.2 风道结构设计

 图 3 不同类型风道结构 Fig.3 Different types of air duct structure

 图 4 不同档位对应出风口温度、速度值 Fig.4 Temperature and velocity value of outlet of different gear

 图 5 风道的压力云图 Fig.5 Stress nephogram of air duct

 图 6 风道的速度云图 Fig.6 Velocity contour of air duct

2 重型车乘员舱热环境优化设计仿真分析 2.1 乘员舱几何模型验证 2.1.1 模型建立

 图 7 乘员舱三维模型 Fig.7 3d model of passenger compartment

2.1.2 乘员舱热环境实验分析

(1) 重型车内表面干净整洁，设备良好完整，停放在阳光充足的场地；

(2) 室外大气温度约-9.7 ℃左右，天气晴朗，阳光充足，微风；

(3) 各个舱门处于打开状态.

 图 8 乘员舱内测温点分布 Fig.8 Distribution of temperature measuring points in passenger compartment

2.1.3 边界条件及相关参数设置

2.1.4 模拟结果与实验结果验证

 图 9 不同测点实验值与模拟值对比 Fig.9 Contrast of the simulated values and the experimental values of different measuring points

2.2 乘员舱热环境的正交试验优化设计

2.2.1 正交试验设计

2.2.2 试验结果分析

(A1与A4对比)当取A1时，驾驶员头部测点温度不变，乘员1头部测点温度上升4.89%(不利)，乘员2头部测点温度上升3.2%(不利)，驾驶员脚部测点温度下降7.71%(不利)，乘员1脚部测点温度下降5%(不利)，乘员2脚部测点温度下降8.5%(不利).很明显A1与A4相比，A4效果更加理想.

2.3 最终优化方案数值模拟 2.3.1 边界条件

2.3.2 监测截面位置

 图 10 截面 Fig.10 Cross section
2.3.3 乘员舱热环境评价指标

 ${k_T} = \frac{{{\sigma _T}T}}{{\bar T}}$ (1)
 ${k_v} = \frac{{{\sigma _v}}}{{\bar v}}$ (2)

2.3.4 数值模拟结果分析

 图 11 监测点温升曲线 Fig.11 Temperature rise curve of monitoring stations

3 结论

 [1] 邓峰. 汽车内流场与风窗玻璃除霜除雾研究[D]. 长沙: 湖南大学, 2009. DENG Feng.Research on airflow field in car cabin and defrost and defog of Windshield[D].Changsha:Hunan University, 2009. [2] 熊可嘉, 杨志刚. 轿车空调车室内流动换热计算[J]. 同济大学学报(自然科学版), 2011, 39(5): 716 XIONG Kejia and YANG Zhigang. Simulation of Flow Field and Heat transfer in Passenger Compartment[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 716 [3] ANSI/ASHRAE.Thermal environmental conditions for human occupancy [M].Atlanta:American Society of Heating, Refrigerating and Air Conditioning Engineering Inc, 1992. [4] Alahmer A, Mayyas A, Mayyas A A, et al. Vehicular thermal comfort models:a comprehensive review[J]. Applied Thermal Engineering, 2011, 31(6-7): 995 DOI:10.1016/j.applthermaleng.2010.12.004 [5] 温正, 石良辰, 任毅.FLUENT流体计算应用教程[M].北京:清华大学出版社, 2009. WEN Zheng, SHI Liangchen, REN Yi.FLUENT fluid computing applications [M].Beijing:Tsinghua University Press, 2009. [6] 百度. 正交试验设计及结果分析[EB/OL]. [2014-10-30]. http://wenku.baidu.com/view/48df8302a6c30c2259019ec0.html?re=view. Baidu.Design and result analysis of orthogonal experiment.[DB/OL].[2014-10-30].http://wenku.baidu.com/view/48df8302a6c30c2259019ec0.html?re=view. [7] 任露泉.试验优化技术[M].北京:机械工业出版社, 1987. REN Luquan.Test optimization techniques [M].Beijing:China Machine Press, 1987. [8] 李先庭, 赵彬.室内空气流动数值模拟[M].北京:机械工业出版社, 2009. LI Xianting, ZHAO Bin.Numerical simulation of indoor air flow [M].Beijing:China Machine Press, 2009.