文章快速检索    
  同济大学学报(自然科学版)  2017, Vol. 45 Issue (11): 1688-1693.  DOI: 10.11908/j.issn.0253-374x.2017.11.016
0

引用本文  

杨哲, 陆正刚, 张矿岩, 黄琦. 独立旋转车轮有轨电车μ综合导向控制[J]. 同济大学学报(自然科学版), 2017, 45(11): 1688-1693. DOI: 10.11908/j.issn.0253-374x.2017.11.016.
YANG Zhe, LU Zhenggang, ZHANG Kuangyan, HUANG Qi. μ-Synthesis Active Guidance Control of Tramcar with Independently Rotating Wheels[J]. Journal of Tongji University (Natural Science), 2017, 45(11): 1688-1693. DOI: 10.11908/j.issn.0253-374x.2017.11.016

第一作者

杨哲(1988—),男,博士生,主要研究方向为轨道车辆主动控制. E-mail: 602880260@163.com

通信作者

陆正刚(1966—),男,教授,博士生导师,工学博士,主要研究方向为轨道车辆动力学与控制. E-mail: luzhenggang@tongji.edu.cn

文章历史

收稿日期:2016-11-18
独立旋转车轮有轨电车μ综合导向控制
杨哲 , 陆正刚 , 张矿岩 , 黄琦     
同济大学 铁道与城市轨道交通研究院, 上海 201804
摘要:采用μ综合方法设计了低地板有轨电车主动导向鲁棒控制器,以使其重新获取由于采用独立旋转车轮而失去的直线对中和曲线通过能力,同时对车辆系统的参数不确定性具有良好的鲁棒性能.建立了独立旋转车轮有轨电车的两轴车模型,模型中每个车轮和一个轮毂电机相联.通过控制同一车轴左右轮上的电机输出转矩实现车辆的主动导向控制.在Matlab软件中对控制器进行了仿真验证,结果表明控制算法能够同时满足系统的鲁棒稳定性和鲁棒性能,并使车辆获得良好的直线对中和曲线通过性能.
关键词轨道车辆    有轨电车    主动导向    独立旋转车轮    鲁棒控制    
μ-Synthesis Active Guidance Control of Tramcar with Independently Rotating Wheels
YANG Zhe , LU Zhenggang , ZHANG Kuangyan , HUANG Qi     
Institute of Rail Transit, Tongji University, Shanghai 201804, China
Abstract: This paper presents a robust active guidance controller using robust μ synthesis method, to let the tramcar possess self-guidance and steering ability again which is lost by adopting independent rotating wheels(IRWs), and to deal with parametric uncertainties such as creep coefficients and wheelset conicity variations. A two-axle tramcar model with IRWs was established, in which each wheel was associated with a hub motor. By controlling the torque of the motor connect with the left and right side wheels in the same axle, active guidance and steering was achieved. A validation of the control method was carried out by using Matlab, the simulation results show that the control algorithm can satisfy the robust stability and robust performance of the system, and let the tramcar obtain good self-guidance and steering performance at the same time.
Key words: railway vehicle    tramcar    active guidance    independently rotating wheels    robust control    

低地板有轨电车通常采用车轴可以下凹的独立旋转车轮,以便降低车辆地板面的高度.不同于传统刚性轮对的两车轮与车轴固结在一起,独立旋转车轮2个车轮可以绕车轴独立旋转,因此其纵向蠕滑力很小,造成其缺少直线对中和曲线通过能力.所以当有轨电车直线运行时,在轨道横向激励作用下容易造成车轮轮缘和钢轨的接触,增大轮轨磨耗和运行阻力;曲线通过时由于缺乏自导向能力,独立旋转车轮的轮缘和钢轨会持续贴靠,也会增加运行阻力和轮轨磨耗[1].

随着技术的发展,机电一体化主动控制技术在轨道车辆上得到了越来越广泛的应用,因此通过主动导向控制使独立旋转车轮获得直线对中和曲线通过性能是研究的热点和未来的发展趋势[2]:Mei等[3]研究了通过控制安装在车轴与构架间的作动器来实现独立旋转车轮的主动导向控制;Wickens等[4]研究了横向导杆控制式独立旋转车轮主动控制技术;Gretzschel等[5]提出通过控制独立旋转车轮的转速或转矩来实现车轮主动导向.

在各种主动导向结构方案中,四轮独立驱动的结构方案不需要加装额外的作动器,并且在斯柯达公司的ForCity、庞巴迪公司的Eurotram和Incentro低地板有轨电车上均得到应用,结构形式成熟,文献[6-8]分别采用PID控制、二次最优控制等方法对此种结构的主动导向技术进行了研究.另外由于轨道车辆是复杂的非线性系统,并且其很多结构参数及外部激励在实际运行中是实时变化、不可测量的,如蠕滑系数、踏面斜度及轨道随机激励等,整个车辆构成了一个非线性不确定系统,因此本文重点研究包含参数不确定的四轮独立驱动有轨电车的主动导向控制.

1 独立旋转车轮有轨电车动力学模型

为了解决轨道车辆的运行稳定性和曲线通过性能之间的矛盾,传统的轨道车辆一般采用构架与轮对通过一系悬挂相联接的结构形式.由于机电一体化的发展,通过主动控制使车辆保持运行稳定性成为可能,这不但可以取消构架,而且可以简化车辆结构、降低车辆质量和运行能耗.德国宇航局(DLR)的下一代列车项目[9]便是采用两轴车和主动控制实现列车的高速运行稳定性.因此本文采用图 1所示的有轨电车模型研究车辆的主动导向技术,车体通过纵横向弹簧和阻尼分别与独立旋转车轮相联,每个车轮上安装有一个永磁轮毂电机,可以提供牵引和控制转矩.图中:a为一系悬挂横向跨距之半, a=1 m;b为车辆跨距之半,b=3.2 m;l为左右轮接触点之半,l=0.75 m;Ψ为摇头自由度;kx为一系悬挂纵向刚度,kx=0.1 MN·m-1ky为一系悬挂横向刚度,ky=5 MN·m-1cxcy分别为一系悬挂纵、横向阻尼,cx=cy=10 kN·s·m-1.图示系统考虑车体和前后车轴的横移、摇头和车轮的旋转运动,共10个自由度,车辆的运动学方程如式(1)~(5)所示.

图 1 独立旋转车轮有轨电车示意 Fig.1 Schematic diagram of tramcar model
$ \begin{array}{l} {m_{\rm{w}}}{{\ddot y}_{{\rm{w}}i}} + \frac{{2{f_{22}}}}{v}{{\dot y}_{{\rm{w}}i}} + 2{c_y}\left( {{{\dot y}_{{\rm{w}}i}} - {{\dot y}_{\rm{b}}}} \right) + 2{k_y}\left( {{y_{{\rm{w}}i}} - {y_{\rm{b}}}} \right) + \\ {k_{\rm{g}}}{y_{{\rm{w}}i}} - 2{f_{22}}{\mathit{\Psi }_{{\rm{w}}i}} + {\left( { - 1} \right)^i}2b{c_y}{{\mathit{\dot \Psi }}_{\rm{b}}} + {\left( { - 1} \right)^i}2b{k_y}{\mathit{\Psi }_{\rm{b}}} = \\ {m_{\rm{w}}}\left( {\frac{{{v^2}}}{{{R_i}}} - g{\theta _i}} \right) + {F_\eta } \end{array} $ (1)
$ \begin{array}{l} {I_{{\rm{w}}z}}{{\mathit{\ddot \Psi }}_{{\rm{w}}i}} + \frac{{2{f_{11}}{l^2}}}{v}{{\mathit{\dot \Psi }}_{{\rm{w}}i}} + \frac{{2{f_{11}}\lambda l}}{{{r_0}}}{y_{{\rm{w}}i}} + 2{a^2}{c_x}\left( {{{\mathit{\dot \Psi }}_{{\rm{w}}i}} - {{\mathit{\dot \Psi }}_{\rm{b}}}} \right) + \\ 2{a^2}{k_x}\left( {{\mathit{\Psi }_{{\rm{w}}i}} - {\mathit{\Psi }_{\rm{b}}}} \right) - {k_\mathit{\Psi }}{\mathit{\Psi }_{{\rm{w}}i}} - \frac{{2{r_0}{f_{11}}l}}{v}{{\dot \beta }_{{\rm{w}}i}} = \frac{{2{f_{11}}{l^2}}}{{{R_i}}} + \\ \frac{{2{f_{11}}\lambda l}}{{{r_0}}}{y_{{\rm{t}}i}} \end{array} $ (2)
$ \begin{array}{l} {I_{{\rm{w}}y}}{{\ddot \beta }_{{\rm{w}}i}} + \frac{{{r_0}{f_{11}}}}{v}{{\dot \beta }_{{\rm{w}}i}} + {f_{11}}\lambda {y_{{\rm{w}}i}} + \frac{{{r_0}{f_{11}}l}}{v}{{\mathit{\dot \Psi }}_{{\rm{w}}i}} = \frac{{{r_0}{f_{11}}l}}{{{R_i}}} + \\ {f_{11}}\lambda {y_{{\rm{t}}i}} + {T_{{\rm{w}}i}} \end{array} $ (3)
$ \begin{array}{l} {m_{\rm{b}}}{{\ddot y}_{\rm{b}}} + 2{c_y}\left( {2{{\dot y}_{\rm{b}}} - {{\dot y}_{{\rm{w1}}}} - {{\dot y}_{{\rm{w2}}}}} \right) + 2{k_y}\left( {2{y_{\rm{b}}} - {y_{{\rm{w1}}}} - {y_{{\rm{w2}}}}} \right) = \\ \frac{{{m_{\rm{b}}}{v^2}}}{2}\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) - \frac{{{m_{\rm{b}}}g}}{2}\left( {{\theta _1} + {\theta _2}} \right) \end{array} $ (4)
$ \begin{array}{l} {I_{\rm{b}}}{{\mathit{\ddot \Psi }}_{\rm{b}}} + 4\left( {{b^2}{c_y} + {a^2}{c_x}} \right){{\mathit{\dot \Psi }}_{\rm{b}}} + 4\left( {{b^2}{k_y} + {a^2}{k_x}} \right){\mathit{\Psi }_{\rm{b}}} - \\ 2b{c_y}\left( {{{\dot y}_{{\rm{w1}}}} - {{\dot y}_{{\rm{w2}}}}} \right) - 2b{k_y}\left( {{y_{{\rm{w1}}}} - {y_{{\rm{w2}}}}} \right) - 2{a^2}{k_x}\left( {{\mathit{\Psi }_{{\rm{w1}}}} + } \right.\\ \left. {{\mathit{\Psi }_{{\rm{w2}}}}} \right) - 2{a^2}{c_x}\left( {{{\mathit{\dot \Psi }}_{{\rm{w1}}}} + {{\mathit{\dot \Psi }}_{{\rm{w2}}}}} \right) = 0 \end{array} $ (5)

式中:mw为轮对质量,mw =1 250 kg;Iwz为轮对在z轴上的转动惯量,Iwz=700 kg·m2Iwy为车轮绕y轴的旋转转动惯量,Iwy=27 kg·m2mb为车体质量,mb=12 000 kg,Ib为车体绕z轴转动惯量,Ib=88 610 kg·m2f11f22分别为纵、横向蠕滑系数,f11=6.4 MN,f22=5.6 MN;yti为轨道横向不平顺,m;ywiyb分别为车轮和车体的横移,m,下标i=1、2分别表示车辆的前后轮;ΨwiΨb分别为车轮和车体的摇头角,rad;${\dot \beta _{{\rm{w}}i}} $为左右车轮转速差,rad·s-1N=(mw+0.5mb)g/2为车轮垂向载荷,N;g为重力加速度,g=9.8 m·s-2kg为轮对重力刚度,N·m-1${k_{\rm{g}}} = \frac{{N\lambda }}{s}$kΨ为轮对重力角刚度,N·m·rad-1kΨ=Nlλ${{\dot \beta }_{{\rm{w}}i}} $Twi分别为左右轮控制转矩差之半,N·m,${{\dot \beta }_{{\rm{w}}i}} = \frac{{{{\dot \beta }_{{\rm{wL}}i}}-{{\dot \beta }_{{\rm{wR}}i}}}}{2}, {T_{{\rm{w}}i}} = \frac{{{T_{{\rm{wL}}i}}-{T_{{\rm{wR}}i}}}}{2};{F_\eta } $为轮缘接触力,N,$ {F_\eta } = \left\{ \begin{array}{l}-{k_\eta }\left( {{y_{{\rm{w}}i}}-\eta } \right), \;\;\;\eta \le {y_{{\rm{w}}i}}\\ 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-\eta \le {y_{{\rm{w}}i}} \le \eta \\ {k_\eta }\left( {{y_{{\rm{w}}i}} - \eta } \right), \;\;\;\;\;{y_{{\rm{w}}i}} \le - \eta \end{array} \right., $,其中η为轮轨间隙, η=8 mm;v为车辆运行速度,m·s-1λ为踏面锥度,λ=0.125; r0为车轮名义滚动圆半径,r0=0.35;Ri为曲线半径,m;θi为曲线超高角,rad.

主动控制的目的之一是避免轮缘贴靠钢轨以使轮缘接触力为零,此时式(1)~(5)可写为

$ \mathit{\boldsymbol{\dot x}} = \mathit{\boldsymbol{A}}x + {\mathit{\boldsymbol{B}}_1}w + {\mathit{\boldsymbol{B}}_2}u $ (6)

式中:x为状态向量;A为状态矩阵;B1为输入矩阵;B2为控制输入矩阵;w为系统外部输入;u为控制输入.

$ \begin{array}{l} \mathit{\boldsymbol{x}} = \left[{\begin{array}{*{20}{c}} {{y_{{\rm{w}}1}}}&{{\mathit{\Psi }_{{\rm{w1}}}}}&{{\mathit{\Psi }_{{\rm{w1}}}}}&{{y_{{\rm{w}}2}}}&{{\mathit{\Psi }_{{\rm{w2}}}}}&{{\beta _{{\rm{w2}}}}}&{{y_{\rm{b}}}}&{{\mathit{\Psi }_{\rm{b}}}} \end{array}} \right.\\ {\left. {\begin{array}{*{20}{c}} {{{\dot y}_{{\rm{w}}1}}}&{{{\mathit{\dot \Psi }}_{{\rm{w1}}}}}&{{{\dot \beta }_{{\rm{w1}}}}}&{{{\dot y}_{{\rm{w}}2}}}&{{{\mathit{\dot \Psi }}_{{\rm{w2}}}}}&{{{\dot \beta }_{{\rm{w2}}}}}&{{{\dot y}_{\rm{b}}}}&{{{\mathit{\dot \Psi }}_{\rm{b}}}} \end{array}} \right]^{\rm{T}}} \end{array} $
$ \mathit{\boldsymbol{w}} = {\left[{\begin{array}{*{20}{c}} {1/{R_1}}&{{\theta _1}}&{{y_{{\rm{t1}}}}}&{1/{R_2}}&{{\theta _2}}&{{y_{{\rm{t2}}}}} \end{array}} \right]^{\rm{T}}} $
$ \mathit{\boldsymbol{u}} = {\left[{\begin{array}{*{20}{c}} {{T_{{\rm{w}}1}}}&{{T_{{\rm{w}}2}}} \end{array}} \right]^{\rm{T}}} $
2 鲁棒控制器设计

车轮的横移量和摇头角是评价车辆直线对中和曲线通过性能的重要指标,横移量关系到是否发生轮缘与钢轨接触及车辆运动的稳定性;车轮冲角影响横向蠕滑力的大小.由于左右车轮存在横向耦合,所以只需控制轮对横移量的大小即可[10],为此定义控制器的系统输出: z=[yw1 yw2]T,测量变量: $ \mathit{\boldsymbol{y = }}{\left[{{{\dot y}_{{\rm{w1}}}}\;\;{{\mathit{\dot \Psi }}_{{\rm{w1}}}}\;\;{{\dot \beta }_{{\rm{w1}}}}\;\;{{\dot y}_{{\rm{w2}}}}\;\;{{\mathit{\dot \Psi }}_{{\rm{w2}}}}\;\;{{\dot \beta }_{{\rm{w2}}}}\;\;{{\dot y}_{\rm{b}}}\;\;{{\mathit{\dot \Psi }}_{\rm{b}}}} \right]^{\rm{T}}}$,结合式(1)~(6)得

$ \left[{\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\dot x}}}\\ z\\ y \end{array}} \right] = \left[{\begin{array}{*{20}{c}} \mathit{\boldsymbol{A}}&{{\mathit{\boldsymbol{B}}_1}}&{{\mathit{\boldsymbol{B}}_2}}\\ {{\mathit{\boldsymbol{C}}_1}}&{{\mathit{\boldsymbol{D}}_{11}}}&{{\mathit{\boldsymbol{D}}_{12}}}\\ {{\mathit{\boldsymbol{C}}_2}}&{{\mathit{\boldsymbol{D}}_{21}}}&{{\mathit{\boldsymbol{D}}_{22}}} \end{array}} \right]\left[{\begin{array}{*{20}{c}} x\\ w\\ u \end{array}} \right] $ (7)

主动控制的目的是实现独立旋转车轮车辆直线对中和曲线导向性能,同时保证电机的输出转矩不超过许用值,即:设计控制器K,使车辆系统在外部输入w的作用下,系统输出z和控制输出y符合设计要求,如图 2所示.

图 2 车辆系统控制结构原理 Fig.2 Interconnection structure of the normal system
2.1 系统参数不确定及表示

由于悬挂系统的非线性特性,车辆运行时其刚度和阻尼会在一定范围内波动;另外由于轮轨接触几何非线性,车辆运行时轮轨间的纵、横向蠕滑系数及踏面锥度也会产生很大的变化,因此文中把上述参数表示为不确定变量.设P是不确定性变量,则P可以表示为

$ p = \bar p\left( {1 + d\delta } \right) $ (8)

式中:pP的名义值;d为参数的变化范围;δ是未知扰动,满足||δ||≤1.则车辆系统的不确定变量可表示为:kx=kx(1+dkxδkx),ky=ky(1+dkyδky),cx=cx(1+dcxδcx),cy=cy(1+dcyδcy),λ= λ(1+dλδλ),f11=f11(1+df11δf11),f22=f22(1+df22δf22).其中dkxdkydcxdcy的值为5%,即一系纵横向的弹簧和阻尼值在名义值的5%范围内波动,dλ的值为60%,df11df22的值为15%,‖δkx‖,‖δky‖,‖δcx‖,‖δcy‖,‖δλ‖,‖δf11‖,‖δf22‖≤1.则式(7)可表示为

$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{H}}\left( s \right) = \left[{\begin{array}{*{20}{c}} \mathit{\boldsymbol{A}}&\mathit{\boldsymbol{B}}\\ \mathit{\boldsymbol{C}}&\mathit{\boldsymbol{D}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\bar A}} + \sum\limits_{i = 1}^k {{\delta _i}{{\mathit{\boldsymbol{\hat A}}}_i}} }&{\mathit{\boldsymbol{\bar B}} + \sum\limits_{i = 1}^k {{\delta _i}{{\mathit{\boldsymbol{\hat B}}}_i}} }\\ {\mathit{\boldsymbol{\bar C}} + \sum\limits_{i = 1}^k {{\delta _i}{{\mathit{\boldsymbol{\hat C}}}_i}} }&{\mathit{\boldsymbol{\bar D}} + \sum\limits_{i = 1}^k {{\delta _i}{{\mathit{\boldsymbol{\hat D}}}_i}} } \end{array}} \right] = }\\ {\left[{\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\bar A}}}&{\mathit{\boldsymbol{\bar B}}}\\ {\mathit{\boldsymbol{\bar C}}}&{\mathit{\boldsymbol{\bar D}}} \end{array}} \right] + \sum\limits_{i = 1}^k {{\delta _i}\left[{\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\hat A}}}_i}}&{{{\mathit{\boldsymbol{\hat B}}}_i}}\\ {{{\mathit{\boldsymbol{\hat C}}}_i}}&{{{\mathit{\boldsymbol{\hat D}}}_i}} \end{array}} \right]} } \end{array} $ (9)

式中:B=[B1 B2],C=[C1 C2]T$ \mathit{\boldsymbol{D = }}\left[{\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}\\ {{D_{21}}}&{{D_{22}}} \end{array}} \right]$.系统矩阵由名义矩阵ABCD及由参数不确定性产生的矩阵$ {{\mathit{\boldsymbol{\hat A}}}_i}、{{\mathit{\boldsymbol{\hat B}}}_i}、{{\mathit{\boldsymbol{\hat C}}}_i}$$ {{\mathit{\boldsymbol{\hat D}}}_i}$构成.其中$\mathit{\boldsymbol{\bar A、}}{{\mathit{\boldsymbol{\hat A}}}_i} \in {\mathbb{R}^{n \times {n}}}, \mathit{\boldsymbol{\bar B、}}{{\mathit{\boldsymbol{\hat B}}}_i} \in {\mathbb{R}^{n \times {n_u}}}, $$ \mathit{\boldsymbol{\bar C、}}{{\mathit{\boldsymbol{\hat C}}}_i} \in {\mathbb{R}^{{n_y} \times {n}}}, \mathit{\boldsymbol{\bar D、}}{{\mathit{\boldsymbol{\hat D}}}_i} \in {\mathbb{R}^{{n_y} \times {n_u}}}, k = 7, n = 16, {n_u} = 2, {n_y} = 8$.

2.2 系统参数不确定的分离

μ综合鲁棒控制的求解基于小增益定理,其需要把系统内部的不确定性表示成系统的外部摄动,因此首先需要把系统中的不确定参数分离出来[11].对每一个由不确定性引起的矩阵进行奇异值分解(SVD),设qi为矩阵Hi的秩:

$ {\mathit{\boldsymbol{H}}_i} \triangleq \left[{\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\hat A}}}_i}}&{{{\mathit{\boldsymbol{\hat B}}}_i}} \\ {{{\mathit{\boldsymbol{\hat C}}}_i}}&{{{\mathit{\boldsymbol{\hat D}}}_i}} \end{array}} \right], \;\;\;{\mathit{\boldsymbol{H}}_i} \in {\mathbb{R}^{\left( {n + {n_y}} \right) \times \left( {n + {n_u}} \right)}} $ (10)

Hi可记为

$ {\mathit{\boldsymbol{\delta }}_i}{\mathit{\boldsymbol{H}}_i} = \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{L}}_i}}\\ {{\mathit{\boldsymbol{W}}_i}} \end{array}} \right]\left[{{\mathit{\boldsymbol{\delta }}_i}{\mathit{\boldsymbol{I}}_{qi}}} \right]{\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{R}}_i}}\\ {{\mathit{\boldsymbol{Q}}_i}} \end{array}} \right]^ * } $ (11)

式中: ${L_i} \in {\mathbb{R}^{n \times {q_i}}}, {W_i} \in {\mathbb{R}^{{n_y} \times {q_i}}}, {R_i} \in {\mathbb{R}^{n \times {q_i}}}, {Q_i} \in {\mathbb{R}^{{n_u} \times {q_i}}} $.则

$ \mathit{\boldsymbol{H}}\left( s \right) = {\mathit{\boldsymbol{H}}_{11}} + {\mathit{\boldsymbol{H}}_{12}}\Delta {\mathit{\boldsymbol{H}}_{21}} $ (12)

式中: ${\mathit{\boldsymbol{H}}_{11}} = \left[{\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\bar A}}}&{\mathit{\boldsymbol{\bar B}}} \\ {\mathit{\boldsymbol{\bar C}}}&{\mathit{\boldsymbol{\bar D}}} \end{array}} \right];{\mathit{\boldsymbol{H}}_{12}} = \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{L}}_1}}& \cdots &{{\mathit{\boldsymbol{L}}_k}} \\ {{\mathit{\boldsymbol{W}}_1}}& \cdots &{{\mathit{\boldsymbol{W}}_k}} \end{array}} \right]; $$\mathit{\Delta }{\rm{ = diag}}\left[{{\delta _1}{I_{{q_1}}}\;\; \cdots \;\;{\delta _k}{I_{{q_k}}}} \right];{\mathit{\boldsymbol{H}}_{21}} = \left[{\begin{array}{*{20}{c}} {R_1^*}&{Q_1^*} \\ \vdots&\vdots \\ {R_k^*}&{Q_k^*} \end{array}} \right] $.

由下线性分式变换得

$ \mathit{\boldsymbol{H}}\left( s \right) = {F_l}\left( {\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{H}}_{11}}}&{{\mathit{\boldsymbol{H}}_{12}}}\\ {{\mathit{\boldsymbol{H}}_{21}}}&{\bf{0}} \end{array}} \right], {\mathit\Delta} } \right) $ (13)

$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{P}}\left( s \right) = \left[{\begin{array}{*{20}{c}} \mathit{\boldsymbol{A}}&{{\mathit{\boldsymbol{B}}_1}}&{{\mathit{\boldsymbol{B}}_2}}\\ {{\mathit{\boldsymbol{C}}_1}}&{{\mathit{\boldsymbol{D}}_{11}}}&{{\mathit{\boldsymbol{D}}_{12}}}\\ {{\mathit{\boldsymbol{C}}_2}}&{{\mathit{\boldsymbol{D}}_{21}}}&{{\mathit{\boldsymbol{D}}_{22}}} \end{array}} \right] = }\\ {\left( {{F_{\rm{u}}}\left[{\begin{array}{*{20}{c}} \mathit{\boldsymbol{A}}&\mathit{\boldsymbol{B}}\\ \mathit{\boldsymbol{C}}&\mathit{\boldsymbol{D}} \end{array}} \right], \frac{1}{s}\mathit{\boldsymbol{I}}} \right) = \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_{11}}}&{{\mathit{\boldsymbol{P}}_{12}}}\\ {{\mathit{\boldsymbol{P}}_{21}}}&{{\mathit{\boldsymbol{P}}_{22}}} \end{array}} \right]} \end{array} $ (14)

式中:Pij=Ci(sI-A)-1Bj+Diji, j=1, 2.则

$ \left[{\begin{array}{*{20}{c}} z\\ y \end{array}} \right] = \mathit{\boldsymbol{P}}\left( s \right)\left[{\begin{array}{*{20}{c}} w\\ u \end{array}} \right] $ (15)

由上线性分式变换,并由分式变换的对偶性质得

$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{P}}\left( s \right) = {F_l}\left( {{F_{\rm{u}}}\left( {\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{H}}_{11}}}&{{\mathit{\boldsymbol{H}}_{12}}}\\ {{\mathit{\boldsymbol{H}}_{21}}}&{\bf{0}} \end{array}} \right], \frac{1}{s}\mathit{\boldsymbol{I}}} \right), \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right) = }\\ {{F_{\rm{u}}}\left( {{P_{{\rm{nom}}}}, \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)} \end{array} $ (16)

式中: $ {P_{{\rm{nom}}}} = {F_{\rm{u}}}{\left( {\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{H}}_{11}}}&{{\mathit{\boldsymbol{H}}_{12}}} \\ {{\mathit{\boldsymbol{H}}_{21}}}&\mathit{\boldsymbol{0}} \end{array}} \right], \frac{1}{s}\mathit{\boldsymbol{I}}} \right)^{\rm{T}}}$.至此系统中的不确定性全部包含在Δ中,并作为系统的外部输入,图 2所示的系统可以表示成为图 3所示.

图 3 含不确定参数的车辆控制原理 Fig.3 Interconnection structure of vehicle system with uncertain parameter
2.3 系统输入输出约束

外部激励w=[1/R1 θ1 yt1 1/R2 θ2 yt2]T随线路改变而变化,其中轨道横向不平顺取美国五级轨道谱,可由白噪声经成型滤波器Sv产生[12],系统的外部激励可由单位激励ewWw滤波产生.考虑测量噪声Wn,并设定系统输出和控制信号输出的约束函数WzWu,系统总的控制框图如图 4.图中eweyeuen为对应维度的向量,满足无穷范数不大于1;Ww=diag{1/R1, θ1, Sv, 1/R2, θ2, Sv}为系统轨道输入滤波器,保证ew经过Ww后产生实际轨道外部输入;Wz=diag{wz, wz}是车轮横移量控制约束:直线时希望轮对的横移量尽量小,取wz=400,以约束车轮横移量小于2.5 mm;曲线时取wz=200,以约束车轮横移量不超过5 mm,从而避免轮缘贴靠钢轨.

图 4 控制系统闭环控制结构 Fig.4 Interconnection structure of the closed-loop system

图 4Wu=diag{wu, wu}是控制输出约束,车辆直线运行时取

$ {w_u} = \frac{{{s^2} + 88s + 3944}}{{{s^2} + 1055s + 567913}} $ (17)

抑制电机的高频输出,并约束输出转矩不超过100N·m;曲线时取

$ {w_u} = \frac{{{s^2} + 88s + 3944}}{{2\left( {{s^2} + 1055s + 567913} \right)}} $ (18)

抑制电机的高频输出,并约束输出转矩不超过200N·m.Wn=diag{wn, …, wn}8×8是测量噪声输入,其中

$ {w_n} = 2 \times {10^{ - 5}}\frac{{10s + 1}}{{0.1s + 1}} $ (19)

为输入系统的高频测量噪声.则系统由输入到输出的传递函数矩阵可表示为

$ \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{e}}_y}}\\ {{\mathit{\boldsymbol{e}}_u}} \end{array}} \right] = \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_z}{\mathit{\boldsymbol{S}}_{\rm{o}}}{\mathit{\boldsymbol{P}}_w}{\mathit{\boldsymbol{W}}_w}}&{{\mathit{\boldsymbol{W}}_z}{\mathit{\boldsymbol{S}}_{\rm{o}}}{\mathit{\boldsymbol{P}}_u}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{W}}_n}}\\ {{\mathit{\boldsymbol{W}}_z}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_{\rm{o}}}{\mathit{\boldsymbol{P}}_w}{\mathit{\boldsymbol{W}}_w}}&{{\mathit{\boldsymbol{W}}_z}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_{\rm{o}}}{\mathit{\boldsymbol{W}}_n}} \end{array}} \right]\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{e}}_w}}\\ {{\mathit{\boldsymbol{e}}_n}} \end{array}} \right] $ (20)

式中:So=(1+PK)-1为输出灵敏度函数; PwPu分别为对应轨道输入和控制输入的传递函数.

2.4 利用小增益定理对控制器求解

对于矩阵$ \mathit{\boldsymbol{M}} \in {\mathbb{C}^{n \times n}}$和块对角不确定结构,如图 5所示.图中:Δ={diag[δ1Ir1, …, δsIrs, Δ1, …, ΔF]: $ {\delta _i} \in \mathbb{C}, {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}_j} \in {\mathbb{C}^{{m_j} \times {m_j}}}\}, \sum\limits_{i = 1}^s {{r_i} + } \sum\limits_{j = 1}^F {{m_i} = n} $nΔ的维数,:={ Δ:σ(Δ) < 1, ΔΔ},则矩阵MΔ下的奇异值为

$ {\mu _{\mathit\Delta} }\left( M \right) = \frac{1}{{\min \left\{ {\bar \sigma \left( \mathit{\boldsymbol{ \boldsymbol{\varDelta} }} \right):\mathit{\boldsymbol{ \boldsymbol{\varDelta} }} \in {\mathit\Delta}, \det \left( {I - M\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right) = 0} \right\}}} $ (21)

如果没有ΔΔ使det(I-M Δ)=0,则μΔ(M):=0.

当块对角不确定性满足Δ时,使图 5系统满足鲁棒性能要求的充分条件是

图 5 鲁棒控制典型形式 Fig.5 Stand robust control structure with parameter uncertain
$ {\left\| {{F_u}\left( {\mathit{\boldsymbol{M}}, \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}} \right)} \right\|_\infty } < 1 $ (22)

得到使图 4系统满足鲁棒性能要求的充分条件为

$ {\left\| {\left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_z}{\mathit{\boldsymbol{S}}_o}{\mathit{\boldsymbol{P}}_w}{\mathit{\boldsymbol{W}}_w}}&{{\mathit{\boldsymbol{W}}_z}{\mathit{\boldsymbol{S}}_o}{\mathit{\boldsymbol{P}}_u}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{W}}_n}}\\ {{\mathit{\boldsymbol{W}}_z}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_o}{\mathit{\boldsymbol{P}}_w}{\mathit{\boldsymbol{W}}_w}}&{{\mathit{\boldsymbol{W}}_z}\mathit{\boldsymbol{K}}{\mathit{\boldsymbol{S}}_o}{\mathit{\boldsymbol{W}}_n}} \end{array}} \right]} \right\|_\infty } < 1 $ (23)

由式(23),利用μ -K迭代法便可求出控制器K.

3 仿真结果

对车辆运行的3种典型工况进行分析,相应的工况和控制目标见表 1.

下载CSV 表 1 仿真工况和控制目标 Tab.1 Simulation conditions and control objectives

图 6是包含控制器K之后系统的鲁棒稳定性和鲁棒性能的μ指标随频率的变化图.其最大值分别为0.18和0.80.两者都小于1,说明所设计的控制器K在保证车辆的运行稳定性的同时,满足了控制器设计目标要求.

图 6 系统鲁棒性能和鲁棒稳定性分析 Fig.6 Robust stability and robust performance margins

车辆以22 m·s-1直线运行时,施加控制前后车轮的横移量如图 7所示,可见施加主动控制后车轮的横移量由最大7 mm减小到2 mm以内,电机输出转矩不超过60 N·m,在消耗很小的控制转矩的同时,使车辆获得很好的对中性能.

图 7 车轮横移量和控制转矩(直线工况,v=22 m·s-1) Fig.7 Wheelset lateral displacement and control torque on straight track (v=22 m·s-1)

图 8是车辆以5 m·s-1的速度通过半径为50 m小曲线半径时前后车轮的横移量及电机控制转矩.由图 8可知,由于车辆没有自导向能力,车辆由直线进入曲线后发生轮缘贴靠;由于缺失自动对中能力,车辆驶出曲线后在重力复原力的作用下有少量的横移回复.在施加主动控制后,车辆的最大横移量小于2 mm,而前后轴上电机的输出力矩最大为15N·m.

图 8 车轮横移量和控制转矩(曲线工况,R=50 m,V=5 m·s-1) Fig.8 Wheelset lateral displacement and control torque on curve track(R=50 m, V=5 m·s-1)

图 9可知,车辆以15 m·s-1的速度通过半径为300 m的曲线时同样发生轮缘贴靠,同时由于轨道激励的作用轮轨间产生了很大的横向力,造成轮轨间反复的贴靠和分离.在施加主动控制后,车辆的最大横移量小于3 mm,而前后轴上电机的输出力矩最大为30 N·m.

图 9 车轮横移量和控制转矩(曲线工况,R=300 m,V=15 m·s-1) Fig.9 Wheelset lateral displacement and control torque on curve track(R=300 m, V=15 m·s-1)
4 结语

建立了独立旋转车轮有轨电车的两轴车模型,基于鲁棒控制理论设计了考虑车辆结构参数和动力学参数不确定时的主动导向控制器,并在Matlab软件中对有轨电车的直线和曲线运行工况分别进行了仿真验证.仿真结果表明鲁棒控制算法能够同时满足系统的鲁棒稳定性和鲁棒性能,并只需较小控制转矩便可使车辆获得良好的直线对中和曲线通过性能;另外由于模型中考虑了系统参数不确定性、测量噪声等因素,因此其具有较好的实际适用性.

参考文献
[1]
李哲峰. 100%低地板车牵引传动系统分析与控制策略研究[D]. 北京: 北京交通大学, 2009.
LI Zhefeng. 100% Low-floor vehicle traction drive system analysis and control strategy research[D]. Beijing: Beijing Jiaotong University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10004-2010040775.htm
[2]
GOODALL R M, BRUNI S, MEI T X. Concepts and prospects for actively controlled railway running gear[J]. Vehicle System Dynamics, 2006, 44(44): 60
[3]
MEI T X, GOODALL R M. Modal controllers for active steering of railway vehicles with solid axle wheelsets[J]. Vehicle System Dynamics, 2000, 34(1): 25 DOI:10.1076/0042-3114(200008)34:1;1-K;FT025
[4]
WICKENS A H, NAGY Z. Guidance and stability of articulated railway vehicles with single axles and various forms of passive and active steering[J]. Vehicle System Dynamics, 2000, 33(1): 306
[5]
GRETZSCHEL M, BOSE L. A new concept for integrated guidance and drive of railway running gears[J]. Control Engineering Practice, 2002, 10(9): 1013 DOI:10.1016/S0967-0661(02)00046-1
[6]
孙效杰, 陆正刚, 张劲. 盘式永磁同步电机直接驱动独立车轮及导向控制技术[J]. 中国铁道科学, 2013, 34(6): 93
SUN Xiaojie, LU Zhenggang, ZHANG Jin. Disc PMSM directly driven independently rotating wheel and steering control method[J]. China Railway Science, 2013, 34(6): 93
[7]
PEARSON J T, GOODALL R M, MEI T X, et al. Active stability control strategies for a high speed bogie[J]. Control Engineering Practice, 2004, 12(11): 1381 DOI:10.1016/S0967-0661(03)00152-7
[8]
任利惠, 周劲松, 沈钢. 一种基于转速反馈的独立轮对的主动导向控制方法[J]. 中国铁道科学, 2006, 27(1): 89
REN Lihui, ZHOU Jinsong, SHEN Gang. An approach of active steering of independently rotating wheelsets based on feedback of wheels rotation speed[J]. China Railway Science, 2006, 27(1): 89
[9]
KURZECK B, HECKMANN A, WESSELER C, et al. Mechatronic track guidance on disturbed track: The trade-off between actuator performance and wheel wear[J]. Vehicle System Dynamics, 2014, 52: 109 DOI:10.1080/00423114.2014.881514
[10]
MEI T X, GOODALL R M. Robust control for independently rotating wheelsets on a railway vehicle using practical sensors[J]. IEEE Transactions on Control Systems Technology, 2001, 9(4): 599 DOI:10.1109/87.930970
[11]
周克敏. 鲁棒与最优控制[M]. 北京: 国防工业出版社, 2002
ZHOU Kemin. Robust and optimal control[M]. Beijing: National Defense Industry Press, 2002
[12]
陈泽深, 王成国. 铁道车辆动力学与控制[M]. 北京: 中国铁道出版社, 2004
CHEN Zeshen, WANG Chengguo. Railway vehicle dynamics and control[M]. Beijing: China Railway Publishing House, 2004