﻿ 钢管塔环型加肋空间节点抗弯性能分析
 文章快速检索
 同济大学学报(自然科学版)  2019, Vol. 47 Issue (1): 9-17.  DOI: 10.11908/j.issn.0253-374x.2019.01.002 0

引用本文

YANG Ziye, DENG Hongzhou. Analysis of Bending Performance of Multi-planar Steel Tubular Connection with Annular Ribbed Plate for Transmission Towers[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 9-17. DOI: 10.11908/j.issn.0253-374x.2019.01.002

文章历史

Analysis of Bending Performance of Multi-planar Steel Tubular Connection with Annular Ribbed Plate for Transmission Towers
YANG Ziye , DENG Hongzhou
College of Civil Engineering, Tongji University, Shanghai 200092, China
Abstract: A static experiment test and finite element numerical simulation method were carried out to investigate the failure modes and bending performance of multi-planar steel tubular connection with annular ribbed plate. Local axial buckling and transverse plastic deformation failures on such connections were observed from these studies. The local buckling depended on the stress on the chord and the plastic deformation was related to the annular ribbed plate-to-chord model comprised by the annular ribbed plate and a section of chord. For the two failure modes, plastic theory, finite element parametric study and regression analysis were used to develop the proposed formulas of ultimate bending moments for such connections. The proposed formulas were compared with that from experimentations and the results show that the formulas have practical significance and could provide references for the design of similar connections.
Key words: multi-planar steel tubular connection    annular ribbed plate    ultimate bearing moment    proposed formula    finite element

1 试验设计 1.1 试验模型

 图 1 环型加肋空间节点 Fig.1 Multi-planar steel tube connection

1.2 材性试验

 图 2 T型截面剖面示意 Fig.2 The profile of T section

1.3 荷载分解及等效

C90节点：

 ${M_{\rm{a}}} = F\left( {D + 2H} \right)/2$ (1)
 $Q = 2F$ (2)
 ${M_{\rm{e}}} = PB$ (3)

C180节点：

 ${M_{\rm{a}}} = 0$ (4)
 $Q = 2F$ (5)
 ${M_{\rm{e}}} = PB$ (6)

1.4 测点布置

 图 4 测点布置 Fig.4 Arrangement of measuring points

 ${M_{\rm{e}}} = PB + {M_{\rm{c}}} = FH$ (7)
 $\delta = 2H\Delta /B$ (8)

2 试验过程 2.1 试验加载

 图 5 试验安装加载 Fig.5 Test set-up

2.2 试验现象描述

 图 6 荷载-应变曲线 Fig.6 Load-strain response curves

2.3 试验主要结果讨论

3 有限元分析 3.1 有限元建模

 图 7 有限元模型 Fig.7 The finite-element model
 图 8 材料的应力-应变关系模型 Fig.8 The stress-strain curve
3.2 有限元模型的验证

 图 9 节点试件破坏模式 Fig.9 Connection failure modes

 图 10 荷载-位移曲线 Fig.10 The load-displacement curves
3.3 计算参数的选取

 图 11 环板-主管模型受力示意图 Fig.11 The force conditions of annular ribbed plate-to-chord model

3.4 计算公式数学模型

 ${P_{{\rm{u2}}}} = {Q_{\rm{u}}}{Q_{\rm{f}}}{f_{\rm{y}}}{t^2}$ (9)
 ${Q_{\rm{f}}} = {\left( {1 - {{\left| n \right|}^{{A_1}}}} \right)^{{B_1}}}$ (10)
 ${Q_{\rm{u}}} = {f_1}\left( {2\gamma } \right){f_2}\left( \beta \right){f_3}\left( \eta \right)$ (11)

3.5 主管轴向应力对承载力的影响

 图 12 主管应力比n对折减系数Qf的影响 Fig.12 The influence of chord stress ratio n on the reduction coefficient Qf
3.6 几何参数对承载力的影响

 图 13 主管径厚比2γ对强度系数Qu的影响 Fig.13 The influence of chord diameter-to-thickness ratio 2γ on the partial design strength function Qu

 ${f_1}\left( {2\gamma } \right) = {A_2}{\left( {2\gamma } \right)^2} + {B_2}\left( {2\gamma } \right) + {C_2}$ (12)
 ${f_2}\left( \beta \right) = {D_2}\beta + {E_2}$ (13)
 ${f_3}\left( \eta \right) = {F_2}\eta + {G_2}$ (14)

 图 14 环板宽度比β对强度系数Qu的影响 Fig.14 The influence of annular ribbed plate width-to-chord diameter β on the partial design strength function Qu
4 建议公式

 ${M_{\max }} = \min \left( {{P_{{\rm{u1}}}},{P_{{\rm{u2}}}}} \right)B$

C90试件：

(1) Pu1的计算

 ${P_{{\rm{u1}}}} = \frac{{4{M_{{\rm{pl}}}}\left( {{N_{{\rm{pl}}}} - N} \right)}}{{8{M_{{\rm{pl}}}} + \sqrt 2 \left( {2H + D} \right){N_{{\rm{pl}}}}}}\frac{H}{B}$

(2) Pu2的计算

 ${P_{{\rm{u2}}}} = {Q_{\rm{u}}}{Q_{\rm{f}}}{f_{\rm{y}}}{t^2}$
 ${Q_{\rm{u}}} = 2.47\left( {0.154\gamma - 1} \right)\left( {2.409\beta + 1} \right)\left( {24.705\eta - 1} \right)$

C180试件：

(1) Pu1的计算

 ${P_{{\rm{u1}}}} = \frac{{{N_{{\rm{pl}}}} - N}}{2}\frac{H}{B}$

(2) Pu2的计算

 ${P_{{\rm{u2}}}} = {Q_{\rm{u}}}{Q_{\rm{f}}}{f_{\rm{y}}}{t^2}$
 $\begin{array}{*{20}{c}} {{Q_{\rm{u}}} = 0.592\left( {0.175\gamma - 1} \right)\left( {8.883\beta + 1} \right)}\\ {\left( {57.223\eta - 1} \right)} \end{array}$

 图 15 环板厚度比η对强度系数Qu的影响 Fig.15 The influence of annular ribbed plate thickness-to-chord diameter η on the partial design strength function Qu

5 结论

(1) 环板加肋钢管节点的破坏模式分为主管局部屈曲和环板-主管模型横向塑性变形.节点破坏模式与主管应力相关.当节点板间夹角较小，弯矩相互叠加，主管中出现较大次应力，引起主管局部屈曲破坏.当节点板间夹角较大，主管内应力较小，受水平力作用出现横向塑性变形破坏.

(2) 外加环板能有效提高节点承载力，对于文中环板尺寸，有环板节点承载力约为相同尺寸无环板节点承载力的3倍.

(3) 本文对JSTA规范公式的准确性进行了考察.当n>-0.4时，JSTA规范折减系数Kn偏于不安全，当n < -0.4时，Kn偏于保守.JSTA规范计算的节点承载力过于保守，约为C90节点试验值的0.7倍，为C180节点试验值的0.5倍.

(4) 针对不同的破坏模式提出了较为完整的环型加肋空间钢管节点承载力建议公式.建议公式计算结果与试验结果进行了对比.结果表明，建议公式可靠有效，能较好地预测节点的抗弯承载力.

 [1] 杨建平. 钢结构架空输电线路钢管塔结构[M]. 北京: 中国电力出版社, 2011 YANG Jianping. Steel tubular tower structures of overhead transmission line[M]. Beijing: China Electric Power Press, 2011 [2] Japanese Electrotechnical Committee. Design standard on structures for transmissions[S]. Tokyo: Japanese Electrotechnical Committee, 2015. [3] 邓洪洲, 姜琦, 黄誉. 输电钢管塔K型管板节点承载力试验及参数[J]. 同济大学学报(自然科学版), 2014, 42(2): 226 DENG Hongzhou, JIANG Qi, HUANG Yu. Experimental investigation and parametric studies on ultimate strength of K-type tube-gusset plate connections in transmission towers[J]. Journal of Tongji University(Natural Science), 2014, 42(2): 226 [4] 刘红军.特高压钢管输电塔插板连接K型节点的受力性能及承载力研究[D].重庆: 重庆大学, 2010. LIU Hongjun. Behaviors and ultimate strength of steel tubular K-Joints with gusset plate connections in UHV transmission towers[D]. Chongqing: Chongqing University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010215518.htm [5] 刘红军, 李正良, 李茂华. 钢管输电塔环型加肋节点极限承载力研究[J]. 工程力学, 2010, 27(10): 65 LIU Hongjun, LI Zhengliang, LI Maohua. Study of ultimate strength of steel tubular joint with annular ribbed plate of transmission towers[J]. Engineering Mechanics, 2010, 27(10): 65 [6] 严立新, 王学明, 吕宝华, 等. 钢管塔全环板节点极限承载力的试验研究与有限元分析[J]. 电力建设, 2013, 34(4): 79 YAN Lixin, WANG Xueming, LÜ Baohua, et al. Experimental research and FEM analysis on ultimate bearing capacity of steel tube tower's joint with annular plate[J]. Electric Power Construction, 2013, 34(4): 79 DOI:10.3969/j.issn.1000-7229.2013.04.017 [7] 刘堃, 李正良, 尤军, 等. 输电钢管塔空间KK型管板连接节点极限承载力[J]. 土木建筑与环境工程, 2016, 38(6): 72 LIU Kun, LI Zhengliang, YOU Jun, et al. Ultimate strength analysis of KK-type tube-gusset plate connections in transmission steel tubular tower[J]. Journal of Civil, Architectural and Environmental Engineering, 2016, 38(6): 72 [8] 日本铁塔协会.输电线路钢管塔制作基准[S].东京: 日本铁塔协会, 2015. The Japanese Steel Tubular Association. Electricity transmitting steel tubular tower manufacture norm[S]. Tokyo: The Japanese Steel Tubular Association, 2015. [9] BORESI A P, SCHMIDT R J. Advanced mechanics of materials[M]. Hoboken: John Wiley and Sons, 2003 [10] LEE S H, SHIN K J, LEE H D, et al. Behavior of plate-to-circular hollow section joints of 600 MPa high-strength steel[J]. International Journal of Steel Structures, 2012, 12(4): 473 DOI:10.1007/s13296-012-4002-6 [11] ANSYS Inc. ANSYS advanced analysis techniques guide[M].[S.l.]: ANSYS Inc, 2014. [12] WARDENIER J, KUROBANE Y, PACKER J A, et al. Design guide for circular hollow section (CHS) joints under predominantly static loading[M]. 2nd ed. Geneva: CIDECT, 2008. [13] WARDENIER J, van der VEGTE G J, MAKINO Y. Joints between plates or Ⅰ sections and a circular hollow section chord[J]. International Journal of Offshore and Polar Engineering, 2009, 19(3): 232