﻿ 波形钢腹板箱梁桥面板横向内力计算方法
 文章快速检索
 同济大学学报(自然科学版)  2019, Vol. 47 Issue (4): 467-474.  DOI: 10.11908/j.issn.0253-374x.2019.04.003 0

### 引用本文

ZHAO Pin, RONG Xueliang, YE Jianshu. Calculation Method of Transverse Internal Force in Bridge Deck of Box Girder with Corrugated Steel Webs[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 467-474. DOI: 10.11908/j.issn.0253-374x.2019.04.003

### 文章历史

1. 东南大学 交通学院, 江苏 南京 210096;
2. 石家庄铁道大学 土木工程学院，河北 石家庄 050043

Calculation Method of Transverse Internal Force in Bridge Deck of Box Girder with Corrugated Steel Webs
ZHAO Pin 1,2, RONG Xueliang 2, YE Jianshu 1
1. School of Transportation, Southeast University, Nanjing 210096, China;
2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract: A single-box double-cell test girder with corrugated steel webs was made to study the transverseal force and girder frame deformation of bridge deck.In order to calculate the transverse internal force, a rigid frame model was put forward with a combination of test results and mechanical characteristics of corrugated steel box girder. Then, a comparative analysis was made among the method described above and girder frame model and board model of highway bridges. Furthermore, an outcome based on the comparison of the three models and test results was presented. The results of rigid frame model and girder frame model are close to test results, the differences are less than 10%. But board model results are more conservative, the differences are about 20%. Compared to the rigid frame model, the girder frame model is more complicated, and the effects of relative ratios of web line stiffness to deck line stiffness on bridge deck transversal force are considered.
Key words: box girder with corrugated steel webs    transverse internal force    model test    bridge deck    rigid frame model

1 模型试验

1.1 模型概况

 图 1 试验梁纵向布置(单位：mm) Fig.1 Elevation of test beam (Unit:mm)
 图 2 试验梁的横断面尺寸及加载位置(单位：mm) Fig.2 Cross section and loading position of test beam (unit:mm)

1.2 加载布置

 图 3 加载试验装置 Fig.3 Experimental setup under static load

1.3 测试布置

 图 4 位移计和应变片布置(单位：mm) Fig.4 Layout of displacement meters and strain gauges (unit:mm)
2 试验结果分析 2.1 箱梁顶板横向应力

 图 5 单点加载时跨中断面的桥面板横向应力分布 Fig.5 Transverse stress distribution of bridge deck of midspan section under single point load

2.2 箱梁框架变形

 图 6 荷载作用下的框架变形 Fig.6 Frame deformation under load

 图 7 试验梁跨中截面的实测位移(单位：mm) Fig.7 Actual displacement of midspan section of test beam (unit:mm)

3 桥面板横向内力分析计算 3.1 简化模型的分析

 图 8 桥面板横向内力计算模型 Fig.8 Computational model of transverse internal force of bridge deck

 ${M_{\rm{b}}} = {M_{\rm{G}}}$ (1)

3.2 波形钢腹板箱梁桥面板的横向内力计算

4 结论

(1) 为研究波形钢腹板箱梁桥面板的横向受力特性，对波形钢腹板单箱双室试验梁的弹性阶段进行试验分析，得出了横向不同加载位置下的横向应力变化规律及箱梁框架变形特征.

(2) 通过三种计算模型的对比分析，提出了采用刚架模型可以代替框架分析法来计算波形钢腹板箱梁桥面板的横向内力.刚架模型作为一种结构比较简单并且能体现波形钢腹板箱梁桥面板横向受力特征的计算模型，考虑了波形钢腹板线刚度与混凝土顶板线刚度比值对混凝土顶板横向内力的影响.该模型计算结果与箱梁框架模型结果及试验结果吻合较好，并且小于我国桥规、日本规范和美国规范值.

(3) 对于等截面箱梁，可选取沿梁跨任何位置单位长度的桥面板横向受力状态；对于变截面箱梁，可取支座附近(波形钢腹板高度较大处)单位长度的桥面板横向受力状态作为全桥桥面板横向受力的标准.可采用基于刚架模型的波形钢腹板箱梁桥面板横向内力简化计算公式Mb=MG进行桥面板横向弯矩计算.

 [1] 黄侨. 桥梁钢-混凝土组合结构设计原理[M]. 北京: 人民交通出版社, 2004 HUANG Qiao. Design principle of steel-concrete composite bridge structures[M]. Beijing: China Communications Press, 2004 [2] 中华人民共和国交通部.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京: 人民交通出版社, 2004. Ministry of Transport of the People's Republic of China. JTG D62-2004 Code for design of highway reinforced concrete and prestressed concrete bridges and culverts[S]. Beijing: China Communications Press, 2004. [3] ELGAALY M, SESHADRI A, HAMILTON R. Bending strength of steel beams with corrugated webs[J]. Journal of Structural Engineering, 1997, 123(6): 772 DOI:10.1061/(ASCE)0733-9445(1997)123:6(772) [4] BAKHT B. Simplified analysis of edge stiffened cantilever slabs[J]. Journal of the Structural Division, 1981, 107(3): 535 [5] 方志, 张志田. 钢筋混凝土变截面箱梁横向受力有效分布宽度分析[J]. 湖南大学学报:自然科学版, 2003, 30(6): 82 FANG Zhi, ZHANG Zhitian. Effective distribution width of the transverse internal force in R-C box girders with varied section[J]. Journal of Hunan University: Natural Sciences, 2003, 30(6): 82 [6] 方志, 郑辉, 刘双阳. 基于塑性分析的钢筋混凝土箱梁悬臂板横向受力有效分布宽度[J]. 土木工程学报, 2012, 45(3): 35 FANG Zhi, ZHENG Hui, LIU Shuangyang. Plastic analysis of the lateral effective width of cantilever slabs of reinforced concrete box-girders[J]. Journal of China Civil Engineering, 2012, 45(3): 35 [7] 徐利平, 胡世德, 杜国华. G-M法在箱梁桥面板计算中的应用[J]. 同济大学学报:自然科学版, 2000, 28(3): 353 XU Liping, HU Shide, DU Guohua. Application of G-M method in analysing the deck of box girders[J]. Journal of Tongji University:Natural Science, 2000, 28(3): 353 [8] 钟新谷, 舒小娟, 张昊宇. 预应力混凝土箱梁横向框架效应有限元分析[J]. 计算力学学报, 2013, 30(4): 549 ZHONG Xingu, SHU Xiaojuan, ZHANG Haoyu. Finite element analysis on transversal frame-effect of prestressed concrete box-girder bridge[J]. Chinese Journal of Computational Mechanics, 2013, 30(4): 549 [9] 刘清.波形钢腹板组合箱梁横向内力理论及试验研究[D].长沙: 湖南大学, 2009. LIU Qing.Theoretical and experimental study on the transverse internal force of the composite box girder with corrugated steel webs[D].Changsha: Hunan University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10532-2009163181.htm [10] 赵品, 叶见曙. 波形钢腹板箱梁桥面板横向内力计算的框架分析法[J]. 东南大学学报:自然科学版, 2012, 42(5): 940 ZHAO Pin, YE Jianshu. Frame analysis method of analyzing transverse internal force of the deck of box girders with corrugated steel webs[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(5): 940 [11] 李淑琴, 王文炜, 万水, 等. 预应力混凝土组合梁界面粘结的试验研究[J]. 工程力学, 2009, 26(6): 141 LI Shuqin, WANG Wenwei, WAN Shui, et al. Experimental study bond behavior of interface between old and new concrete composite beam under prestressing forces[J]. Engineering Mechanics, 2009, 26(6): 141 [12] 聂建国, 朱力, 唐亮. 波形钢腹板的抗剪强度[J]. 土木工程学报, 2013, 46(6): 97 NIE Jianguo, ZHU Li, TANG Liang. Shear strength of trapezoidal corrugated steel webs[J]. China Civil Engineering Journal, 2013, 46(6): 97 [13] 李立峰, 侯立超, 孙君翠. 波形钢腹板抗剪性能的研究[J]. 湖南大学学报:自然科学版, 2015, 42(11): 56 LI Lifeng, HOU Lichao, SUN Juncui. Research on shear mechanical property of corrugated steel webs[J]. Journal of Hunan University: Natural Sciences, 2015, 42(11): 56 [14] KRISTEK V. Theory of box girders[M]. New York: Wiley, 1979 [15] 聂建国. 钢-混凝土组合梁结构:试验、理论与应用[M]. 北京: 科学出版社, 2005 NIE Jianguo. Steel concrete composite bridges[M]. Beijing: China Communications Press, 2005 [16] 刘玉擎. 组合结构桥梁[M]. 北京: 人民交通出版社, 2005 LIU Yuqing. Composite structure bridge[M]. Beijing: China Communications Press, 2005 [17] ELGAALY M, SESHADRI A. Girders with corrugated webs under partial compressive edge loading[J]. Journal of the Structural Division:ASCE, 1997, 122(4): 783 [18] 徐向锋, 张峰, 韦成龙. 预应力混凝土箱梁开裂后的刚度损伤评估[J]. 工程力学, 2015, 32(7): 95 XU Xiangfeng, ZHANG Feng, WEI Chenglong. Stiffness damage assessment of prestressed concrete box-girder after cracking[J]. Engineering Mechanics, 2015, 32(7): 95 [19] 李立峰, 王芳, 刘志才. 体外预应力波形钢腹板组合箱梁徐变性能研究[J]. 湖南大学学报:自然科学版, 2008, 35(5): 1 LI Lifeng, WANG Fang, LIU Zhicai. Study on the creep behavior of externally prestressed composite beam with corrugated steel webs[J]. Journal of Hunan University: Natural Sciences, 2008, 35(5): 1 [20] 郭金琼, 房贞政, 郑振. 箱形梁设计理论[M]. 北京: 人民交通出版社, 2008 GUO Jinqiong, FANG Zhenzheng, ZHENG Zhen. Design theory of box girder[M]. Beijing: China Communications Press, 2008 [21] 程翔云. 梁桥理论与计算[M]. 北京: 人民交通出版社, 1986 CHENG Xiangyun. Theory and calculation of the beam bridge[M]. Beijing: China Communications Press, 1986