﻿ 水泥道面传力杆裹附混凝土应力响应模拟分析
 文章快速检索
 同济大学学报(自然科学版)  2019, Vol. 47 Issue (6): 810-814.  DOI: 10.11908/j.issn.0253-374x.2019.06.010 0

### 引用本文

YUAN Jie, LU Hang, HUANG Chongwei, SUN Chen, YIN Wei. Simulation on the Stress Response of Concrete Around Dowels in Airport Rigid Pavement[J]. Journal of Tongji University (Natural Science), 2019, 47(6): 810-814. DOI: 10.11908/j.issn.0253-374x.2019.06.010

### 文章历史

1. 民航飞行区设施耐久与运行安全重点实验室，上海 201804;
2. 同济大学 道路与交通工程教育部重点实验室，上海 201804;
3. 上海理工大学 交通运输工程系，上海 200093

Simulation on the Stress Response of Concrete Around Dowels in Airport Rigid Pavement
YUAN Jie 1,2, LU Hang 2, HUANG Chongwei 3, SUN Chen 2, YIN Wei 2
1. Key Laboratory of infrastructure durability and operation safety in Airfield of CAAC, Shanghai 201804, China;
2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;
3. Department of Transportation Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Key words: airport pavement    dowel    stress response    numerical simulation    superposition of temperature and load

1 有限元模型 1.1 模型及参数设置

 图 1 有限元模型尺寸(单位：cm) Fig.1 Dimension of finite element model (unit: cm)
 图 2 传力杆周围混凝土网格划分 Fig.2 Meshes of concrete around dowels

 图 3 传力杆布设和编号及加载位置 Fig.3 Distribution and numbering of dowel and loading area

1.2 模型准确性验证

 $\begin{array}{l} {\delta _{\rm{t}}} = - {\delta _0}\frac{{2\cos \lambda \cosh \lambda }}{{\sin 2\lambda + \sinh 2\lambda }}[( - \tan \lambda + \tanh \lambda ) \cdot \\ \cos \frac{y}{{1\sqrt 2 }} + (\tan \lambda + \tanh \lambda )\sin \frac{y}{{1\sqrt 2 }}\sinh \frac{y}{{1\sqrt 2 }}] \end{array}$ (1)
 $\lambda=\frac{b}{l \sqrt{8}}$ (2)
 $l=\sqrt[4]{\frac{E h^{3}}{12\left(1-v^{2}\right) k}}$ (3)
 $\delta_{0}=\frac{l^{2}(1+v) \alpha t}{h}$ (4)

 图 4 板的竖向位移计算值与理论值比较 Fig.4 Comparison of computed results and theoretical results on vertical displacement of slab

2 单独作用下的传力杆裹附混凝土应力分析 2.1 温度梯度的单独作用效果

 图 5 混凝土板在负温度梯度-8℃影响下的翘曲(放大2 000倍后的效果) Fig.5 Warping of slab under negative temperature gradient -8℃ (magnified 2 000 times)
 图 6 传力杆对温度翘曲的约束作用(以负温度为例) Fig.6 Restriction of temperature curling by dowels

 图 7 分析传力杆周围应力集中的角度规定 Fig.7 Definition of angle around dowels
 图 8 温度梯度作用下传力杆裹附混凝土最大主应力 Fig.8 The maximum principal stress of concrete around dowel under temperature gradient
2.2 荷载的单独作用效果

 图 9 荷载作用下传力杆裹附混凝土最大主应力 Fig.9 The maximum principal stress of concrete around dowel under aircraft load

3 温度、荷载叠加作用下的传力杆裹附混凝土应力分析 3.1 温度梯度和板边中心荷载叠加

 图 10 传力杆裹附混凝土的最大主应力(L-Mid和ΔT叠加) Fig.10 The maximum principal stress of concrete around dowel (under superposition of L-Mid and ΔT)
3.2 温度和板角荷载叠加(荷载于传力杆滑动端)

 图 11 传力杆裹附混凝土的最大主应力(L-CUB和ΔT叠加) Fig.11 The maximum principal stress of concrete around dowel (under superposition of L-CUB and ΔT)
3.3 温度和板角荷载叠加(荷载于传力杆固定端)

 图 12 传力杆裹附混凝土的最大主应力(L-CB和ΔT叠加) Fig.12 The maximum principal stress of concrete around dowel (under superposition of L-CB and ΔT)
4 结论

(1) 使用Westergaard的解析解对有限元模型的准确性进行了验证.数值解与理论值的差异主要来自是否使用实体基层、板长、板重.

(2) 在温度单独作用下，传力杆对温度翘曲有约15%的挠度约束作用.

(3) 对于三种荷载位置，作用在板角传力杆滑动端上方时，混凝土内产生应力最大.混凝土的应力集中突出反映于传力杆滑动端裹附的混凝土.

(4) 温度和荷载叠加时，不论荷载作用在哪种位置，负温度梯度均不利于传力杆裹覆混凝土的应力集中，正温度梯度对其有利，因此在温度骤降时行车更容易造成传力杆系统的损坏.

 [1] 中国民用航空局.民用机场水泥混凝土道面设计规范: MH/T5004—2010[S].北京: 中国民用航空局, 2010. Civil Aviation Administration of China. Specifications for airport cement concrete pavement design: MH/T5004—2010[S]. Beijing: Civil Aviation Administration of China, 2010. [2] 石春香, 杨群, 郭忠印. 公路隧道水泥路面板底脱空有限元分析[J]. 公路交通科技, 2008, 25(11): 6 SHI Chunxiang, YANG Qun, GUO Zhongyin. Finite element analysis on void beneath cement concrete pavement slab in highway tunnel[J]. Journal of Highway and Transportation Research and Development, 2008, 25(11): 6 DOI:10.3969/j.issn.1002-0268.2008.11.002 [3] 锁利军, 王秉纲, 陈拴发, 等. 接缝设传力杆水泥混凝土面层结构力学分析[J]. 长安大学学报(自然科学版), 2008, 28(3): 30 SUO Lijun, WANG Binggang, CHEN Shuanfa, et al. Numerical analysis of mechanics of concrete overlay in transverse joint with dowel bars[J]. Journal of Chan'an University (Natural Science Edition), 2008, 28(3): 30 DOI:10.3321/j.issn:1671-8879.2008.03.007 [4] 陈骁, 宋祖科. 旧水泥混凝土路面缩缝加设传力杆的力学效应分析[J]. 工程力学, 2013(1): 339 CHEN Xiao, SONG Zuke. Mechanics effectiveness and analysis of the contraction joint added dowel bar on old cement concrete pavement[J]. Engineering Mechanics, 2013(1): 339 [5] XUE Wang, LI Tiantian. 2014 Numerical mechanical analysis of concrete pavement with dowels in transverse joints[C]//14th COTA International Conference of Transportation Professionals: Safe, Smart, and Sustainable Multimodal Transportation Systems. Changsha: American Society of Civil Engineers (ASCE), 2014: 1020-1031. [6] FRIBERG B F. Design of dowels in transverse joints of concrete pavements[J]. Transactions of the American Society of Civil Engineers, 1940, 195(1): 1076 [7] TIMOSHENKO S, LESSELS J M. Applied elasticity[M]. Pennsylvania: Westinghouse Technical Night School Press, 1925 [8] 李洛克.水泥混凝土路面传力杆的传荷失效机理研究[D].哈尔滨: 哈尔滨工业大学, 2012. LI Luoke. Research on the load transfer failure mechanism for dowel bar in concrete pavement[D]. Harbin: Harbin Institute of Technology, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D419329 [9] 蒋应军.重载交通水泥混凝土路面材料与结构研究[D].西安: 长安大学, 2005. JIANG Yingjun. Study of concrete pavement materials and structure under heavy-load transportation[D]. Xi'an: Chang'an University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-11941-2006030544.htm [10] 蒋应军, 戴经梁. 传力杆与混凝土界面的接触应力[J]. 中国公路学报, 2007, 20(2): 29 JIANG Yingjun, DAI Jingliang. Contact stresses at interfaces between dowels and surrounding concrete[J]. China Journal of Highway and Transport, 2007, 20(2): 29 DOI:10.3321/j.issn:1001-7372.2007.02.006 [11] 蒋应军, 张伟宏. 传力杆对接缝传荷能力及临界荷位处应力的影响[J]. 工程力学, 2009, 26(3): 21 JIANG Yingjun, ZHANG Weihong. Influence of dowel bars on load transfer efficiency and thermal stresses in cement concrete pavement[J]. Engineering Mechanics, 2009, 26(3): 21 [12] KUO C M, HALL K T, DARTER M I. Three-dimensional finite element model for analysis of concrete pavement support[J]. Transportation Research Record, 1995(1505): 119 [13] MAITRA S R, REDDY K S, RAMACHANDRA L S. Load transfer characteristics of dowel bar system in jointed concrete pavement[J]. Journal of Transportation Engineering, 2009, 135(11): 813 DOI:10.1061/(ASCE)TE.1943-5436.0000065 [14] 刘旭峰.水泥混凝土路面接缝传荷衰变试验研究[D].西安: 长安大学, 2012. LIU Xufeng. Study on the decay of load transfer on cement concrete pavement[D]. Xi'an: Chang'an University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10710-1013018053.htm [15] WESTERGAARD H M. Analysis of stresses in concrete pavements due to variations of temperature[C]//Proceedings of the 6th Annual Meeting. Washington D C: Highway Research Board, 1927: 201-215. https://trid.trb.org/view/105055