文章编号: 0253-374X(2024)03-0416-11

Vol. 52 No. 3

Mar. 2024

基于轮轨定位数据的有轨电车区间驾驶特征分析

童文聪¹,滕 靖¹,李君羡¹,姚 幸²,张中杰²

(1. 同济大学上海市轨道交通结构耐久与系统安全重点实验室,上海 201804;2. 上海市有轨电车工程技术中心,上海 200125)

摘要:为分析人工驾驶条件下有轨电车区间速度及可靠性特征,基于轮轨定位数据,计算有轨电车在加速段、巡航段、制动段和交叉口的运行特征指标,分析人工驾驶决策对各指标的影响机制;并建立区间运行速度的多因素回归分析模型及概率分布模型。结果表明:由于人工驾驶的模糊控制特点,司机无法实现充分加减速;终点速度和制动系数对区间运行速度贡献度总占比达57%,是驾驶行为优化的重点;区间运行速度呈高斯混合分布(Gaussian Mixture Model,GMM),对常见绿波带宽有较高的偏出率,是造成线路时间可靠性低的重要原因。

关键词:有轨电车;驾驶行为;速度特征;多元线性回归;高 斯混合分布 **中图分类号**:U482.1 **文献标志码**:A

Analysis of Tram Section Driving Characteristics with Wheel Odometer Data

TONG Wencong¹, TENG Jing¹, LI Junxian¹, YAO Xing², ZHANG Zhongjie²

 (1. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China;
 2. Shanghai Tram Engineering Technology Center, Shanghai 200125, China)

Abstract: To analyze the speed and reliability characteristics of trams under manual driving conditions in sections, wheel odometer data was used to calculate the characteristic indexes in acceleration, cruise, braking and intersection section, and influence mechanism of manual driving decision on each index was proposed. Multi-factor regression model and probability distribution model of section running speed are established. The results indicate that driver can not achieve full acceleration and deceleration due to the fuzzy control of manual driving; the contribution of terminal speed and braking coefficient to section running speed accounts for 57%, which is important for driving behavior optimization; the section running speed conforms to Gaussian mixture distribution (GMM) with high deviation rate to the common green wave bandwidth, resulting in low time reliability of tram lines.

Keywords: tram; driving behavior; velocity characteristics; multiple linear regression; Gaussian Mixture Model

有轨电车是一种基于路面道路的中运量轨道交 通出行方式,一般采用专用道形式,相比地铁具有投 资少,建设周期短的特点,但在中心城区行驶速度往 往低于20km·h¹,无法与小汽车和非机动车形成有 效竞争。与地铁相比,有轨电车受交叉口信号控制 影响,通行时间窗口短;受人工驾驶的模糊性和随机 性影响,有轨电车区间行驶时间有一定波动性,有可 能使车辆偏离预设的时刻表或交通信号控制方案, 导致运行计划被打乱并引起更多次级延误。以上海 松江有轨电车T1线为例,以提前1min和延后2min 内作为正点阈值,其线路后半程平均到站正点率仅 为38.9%。有轨电车运行区间较短,加减速频繁,加 减速性能弱于一般常规公交,其运行特征既不同于 地铁,也不同于公共汽车,具有特殊性,需要进行专 门分析。

考虑有轨电车与基于公交专用道的公共汽车在 运营管理方式上相似之处,后者可以为前者研究提 供借鉴。在车辆行驶参数特征分析方面,部分学者 基于实测数据对通行于公交专用道上公交线路的车 辆行驶特征进行评估,在线路层面建立影响分析模 型^[1-2];Dey等^[3]指出混合交通状态下车速数据服从 单峰或双峰分布;Park等^[4]发现采用多分支的高斯

通信作者:滕 靖,教授,博士生导师,工学博士,主要研究方向为多模式运输系统协同优化、轨道交通运输组织。 E-mail:tengjing@tongji.edu.cn

收稿日期: 2022-07-26

基金项目:国家重点研发计划(2021YFB1600100)

第一作者: 童文聪,博士生,主要研究方向为轨道交通设计与运营组织。E-mail: tongwencong@tongji.edu.cn

混合模型可有效实现多相车速分布曲线的拟合;胡 继华等^[5]基于贝叶斯框架,建立了多相站间车速的 高斯混合模型,以模拟快速公交站间行程车速分布; 陈维荣^[6]等采用包含行驶速度、最大速度、平均加速 度和平均减速度等多个运行参数,基于马尔可夫链 理论将有轨电车行驶工况划分为市区通畅、市区拥 挤、城郊巡航、郊区巡航4种。

在驾驶行为研究方面,侯海晶等¹⁹使用方向盘 转角熵值、加速踏板开度、制动踏板开度作为表征驾 驶风格的特征指标;刘瑞等^[10]基于自然驾驶数据,选 取车辆的纵向加速度、侧向加速度、横摆角速度和速 度作为描述驾驶员驾驶行为的特征参数并估计其概 率分布;YANG等^[11]提出驾驶员存在目标距离估计 错误的问题,并建立了一种误差跟车驾驶模型;冯树 民等^[12]提出基于隐马尔可夫模型的驾驶人"感知一 决策一操控"行为模型,对驾驶员决策的随机性和动 态性进行分析。以上研究主要以小型机动车为研究 对象,其描述的驾驶员生理-心理特征与有轨电车 有相似之处,但由于二者驾驶模式不同,其成果难以 为有轨电车直接借鉴。刘禺贝^[13]根据司机对手杆的 操作幅度和反应速度将有轨电车司机驾驶风格分为 三类:激进型、标准型、迟钝型,并得出基于工况与驾 驶风格的有轨电车能量管理策略;Kubin等^[14]提到司 机对有轨电车加制动系数及最高速度的选择将显著 影响到有轨电车的能耗水平。以上对有轨电车驾驶 行为的研究主要从能耗角度出发,并未考虑其对运 行速度及可靠性的影响。

综上,在采用专用道,同时时刻表和信号控制方 案相对固定的条件下,有轨电车运行仍表现出较大 的低效性和时间不可靠性,人工驾驶的模糊控制特 点是上述问题产生的重要原因。目前对有轨电车运 行特征方面的研究侧重宏观,考虑人工驾驶的微观 层面研究较少;对区间行驶特征的研究主要集中在 行程车速分布上,未进一步解析不同运行阶段的运 行特征及其受人工驾驶特性的影响机制;对驾驶行 为的研究多从安全或者能耗角度出发,对运行速度 及可靠性的关注不足。

为此,本文将有轨电车最小运行单元"区间"作 为基本研究对象,基于高精度有轨电车轮轨定位数 据,将人工驾驶条件下有轨电车运行过程拆分成"加 速一巡航一制动"等子过程,从更微观层面解析有轨 电车驾驶行为特征,并提取各运行过程的关键指标, 分析其内在联系,进而建立区间运行速度的多因素 回归分析模型及概率分布模型,对进一步研究基于 人工驾驶的有轨电车运行速度及可靠性提升方法提供理论依据。

1 数据采集与预处理

定义有轨电车区间为车辆从起始怠速点至结束 怠速点的运行线路子段。在区间内,有轨电车具有 一次完整的加减速行为,常见以站台、交叉口和限速 区变更点为区间划分点。以松江有轨电车T1线为 示例线路,示例线路由长度为150~600 m的短区间 组成,平均区间长度375 m。

采集车辆运行轨迹数据。该数据基于轮距定 位,由一组按时间排序的轨迹点组成,每个轨迹点含 时间、运行距离和瞬时速度3个字段,如表1所示。 数据采集时间间隔不超过0.1s,距离间隔不超过1 m,定位误差远小于GPS数据,可用于微观驾驶行为 分析。由于车轮磨损程度不同导致半径存在差异, 每趟次线路真实里程和轮距检测的里程存在与车轮 半径相关的误差系数,可将对应趟次每个轨迹点的 运行距离乘以该误差系数进行校正。

表1 轨迹点字段示例

Tab.1 Attributions example of each track point record

描述	举例
时间	2021-01-01 12:58:02.680
运行距离/km	5.6223
瞬时速度/ $(km \cdot h^{-1})$	35.2

根据站台、交叉口和限速区变更点的相对位置 将有轨电车轨迹点集合划分为若干区间。设某个区 间的轨迹点集合C={ $R_1, R_2, \ldots, R_i, \ldots, R_n$ },其中 R_i 为单个轨迹点数据,按时间先后顺序排序。 R_i 对 应时间、距离和速度值分别为 t_{R_i}, s_{R_i} 和 v_{R_i} ,其加速度 属性 $a_{R_i} = (v_{R_i} - v_{R_{i-1}})/(t_{R_i} - t_{R_{i-1}})$ 。由于人工驾驶 条件下有轨电车无法定速行驶,加速段和制动段之 间通常采用惰行或加速与惰行混合的操作方式,没 有明确的定速段和惰行段的区分,因此将加速段和 制动段之间的运行区段定义为巡航段,基于以下步 骤将C划分为加速、巡航、制动3个子段:

步骤1 依次检视C中 R_i ,若 $a_{R_i} \leq a_{R_i,cr}$,记该点为加速工况向巡航工况切换点 R_{cr} , $a_{R_i,cr}$ 为车辆在 R_i 点的巡航加速度临界值,本次取 $a_{R_i,cr} = 0$,表示列车停止加速开始巡航。

步骤2 从 R_{cr} 开始继续检视,若 $a_{R_i} \leq a_{R_{n,br}}$,记该点为巡航工况向制动工况切换点 R_{br} , $a_{R_{n,br}}$ 为车辆

在*R*_i点的制动加速度临界值,*a*_{*R*,br}取车辆在*R*_i点采 用制动系数为0.05进行制动时的加速度,表示列车 刚从巡航转向制动。

步骤3 以*R*_{er}和*R*_{br}为分割点,将C划分为3个 子集,分别为该区间的加速段、巡航段、制动段集合。

为研究不同区间长度条件下驾驶行为特征,设 区间长度为L,选择L为281m、424m、552m的3个 区间作为示例区间,标记为区间I、区间II和区间III。 示例区间采用60km·h⁻¹限速,线形平直,无其他运营 管制措施,选取平峰期间、非雨雪等特殊天气下轨迹 数据500~520条不等,基于上述方法进行数据处理。 下文基于分段处理后数据,对示例区间在加速段、制 动段、巡航段的微观运行特征做进一步分析。

2 行驶特征分析

2.1 加速段运行特征

令 $t_{st} = t_{R_a} - t_{R_1}$, $v_{st} = v_{R_a}$, $\sigma_{st} = t_{min,st}/t_{st}$,其中 t_{st} 为加速时间, v_{st} 为加速目标速度, σ_{st} 为加速系数, $t_{min,st}$ 为最小加速时间,即司机采用最大牵引力从 v_0 至 v_{st} 所需时间。以 v_{st} 为自变量,分别以 t_{st} 和 σ_{st} 作为因变量,取起动速度为0的轨迹数据对示例区间进行线性回归分析。

如图1所示,区间I、II、III中加速目标速度 v_{st} 对加速时间 t_{st} 的 Pearson 相关系数r分别为-0.213, 0.029, -0.055,线性回归拟合后F检验P值均大于 0.1,说明加速目标速度与加速时间不显著相关。

图1 加速目标速度与加速时间线性回归

如图2所示,区间I、II、III中加速目标速度v_{st}对 加速系数σ_{st}的r值分别为0.697,0.67,0.549,相关 程度随区间长度增加而减弱,线性回归拟合后F检 验P值均小于0.01,说明加速目标速度与加速系数 显著相关。

Fig.2 Linear regression between starting target speed and acceleration coefficient

上述分析显示,司机会随着加速目标速度的增 大而加大加速力度,从而削弱加速目标速度和加速 时间的正向相关性。其原因在于有轨电车运行区间 较短,加速目标速度越大则区间运行总时间越短,为

避免后续驾驶预留时间不足,需要提高加速系数来 减少加速时间。高目标速度要求司机有较快的反应 速度和时间预判能力,司机也可以选择更低目标速 度和加速系数来获得更多的驾驶冗余时间,从而降 低驾驶操作难度并提高乘坐舒适度。图3显示了区 间车辆从0加速至v_{st}的时间一速度曲线集,可知司 机在低速时具有相近的加速系数,而在速度达到一 定值后加速系数开始离散,轨迹集合呈明显的"扫 帚"形,反映了司机加速系数选择的随机性特征,Q₁ 为25%中位数,Q₃为75%中位数。

2.2 制动段运行特征

令 $t_{br} = t_{R_s} - t_{R_{br}}, v_{br} = v_{R_{br}}, \sigma_{br} = t_{min,br}/t_{br}, t_{br}$ 为制 动时间, v_{br} 为制动起始速度, σ_{br} 为制动系数, $t_{min,br}$ 为 最小制动时间,即司机采用最大制动力从 v_{br} 到 v_{R_s} 所 需时间。

如图4所示,区间I、II、III中制动起始速度 v_{br} 对制动时间 t_{br} 的Pearson相关系数r分别为-0.081, -0.086,0.077,线性回归拟合后F检验P值均大于 0.1,说明制动起始速度与制动时间不显著相关。

如图 5 所示,区间 I、II、III 中 v_{br} 对 σ_{br} 的 r 值分别 为 0. 621,0. 595,0. 401,相关程度随区间长度增加而 减弱,线性回归拟合后 F 检验 P 值均小于 0. 01,说明 制动起始速度与制动系数显著相关。

和加速段类似,制动起始速度越高的司机倾向 于采用更大的制动系数,但相关程度弱于加速段。 相比加速段,制动段增加了速度-距离控制的要求, 司机需要基于直觉对车辆当前速度和目标距离进行 合理控制,以实现精确停车或以安全速度通过交叉 口。如图6所示的一次典型制动过程,司机先将速 度降低至一定值,发现速度不足后减小制动力,直到 接近停车位置再增大制动力,最终实现准确停车,整 个制动过程中进行了多次制动力的调整。

考虑制动操作的复杂性,整个制动调整过程需 要更多的冗余时间,司机倾向于延长总制动时间以 避免越线停车,从而导致较低的制动系数。由图7

Fig.5 Linear regression between braking initial speed and braking coefficient

Fig.6 Example of typical braking track

显示了不同区间长度下加速系数和制动系数的分布 特性,制动系数呈对称分布,而加速系数呈明显左偏态,制动系数普遍小于加速系数,能实现充分制动的 比例远小于能实现充分加速的比例。

2.3 巡航段运行特征

司机在巡航段的主要工作是维持驾驶速度,并 衔接后续制动操作,常采用惰行或惰行加速交替的 方式进行,图8显示了4条典型的巡航段速度一距离 轨迹,说明司机在巡航段具有不同的巡航速度和驾驶习惯。

为分析上述行为的影响,计算巡航时间 $t_{cr} = t_{R_{ar}} - t_{R_{ar}},$ 巡航距离 $s_{cr} = s_{R_{ar}} - s_{R_{ar}},$ 并求平均巡航速度 $v_{cr} = s_{cr}/t_{cr},$ 其中, $s_{R_{br}} \pi s_{R_{ar}}$ 指轨迹点 $R_{br} \pi R_{cr}$ 的距离 坐标。计算区间I、区间II和区间III的 v_{cr} 值的期望 分别为41.4、50和53.2 km·h⁻¹,变异系数分别为 17.4%、16.2%和11.5%,可见司机对巡航速度选 择的离散度较高。随着区间长度增加, v_{cr} 期望增加 而变异系数减小,这是因为区间越长,巡航车速集中 在限速值附近的比例越高,从而减小了 v_{cr} 值的离 散度。

在巡航段轨迹点搜索最大速度 v_{max},且已知巡航 起始速度 v_{st}和巡航结束速度 v_{br},绘制巡航段关键速 度指标分布如图 9 所示,该图显示不同轨迹的平均 巡航速度、最大速度、巡航起始速度和巡航结束速度 的概率分布大体吻合,可认为单趟次巡航过程中车 速变动不大;随着区间长度增大,关键速度指标从对 称分布转向存在左偏分布。对区间 III 图形进行观 察可知, v_{er}概率峰值在 55~60 km·h⁻¹间,仅有少量的

Fig.7 Distribution of acceleration and braking coefficient

Fig.8 Examples of running track in cruise section

超速行为,可见为避免超速,大部分司机选择的巡航 速度略低于区间限速。 图 10 显示不同区间长度下加速时间 t_{st}、巡航时 间 t_{cr}和制动时间 t_{br}分布情况和变化趋势。示例区间 I、II 和 III 的巡航时间期望分别为 5.1、7.2 和 13.7 s, 占 总运行时间的比例分别为 12.4%, 13.9% 和 23.7%, 而制动时间占总运行时间的比例分别为 51.1%, 50.6% 和 41.7%。大部分区间巡航时间仅 几秒, 司机难以在短时间内显著改变车速, 这是单趟 次巡航过程中车速变动不大的主要原因; 同时较短 的巡航时间要求司机快速进行工况切换, 驾驶复杂 性较高, 司机的驾驶风格和技巧会对整个驾驶过程 造成一定影响。由于制动时间占总运行时间比例较 大, 预计制动操作对区间运行车速将产生重大 影响。

2.4 交叉口运行特征

有轨电车区间的起终点一般为站台或交叉口。 区间起终点速度,即车辆在起点起动和到达终点时 的瞬时速度,会直接影响区间运行速度。车辆在站 台需要停车上下客,其对应的起终点速度恒为0, 无须进行分析;而车辆在交叉口可能存在停车通过 和不停车通过两种情况,其对应的起终点速度为变动值,应作为影响变量进行分析。出于安全考虑, 有轨电车在通过交叉口时需要进行限速^[13]。示例 线路的司机被明确告知交叉口限速值为30 km・ h⁻¹,为执行限速操作,司机需要在进入交叉口前开 始减速,并在确认无潜在冲突后加速离开。通过对 实测数据的观察,有轨电车在交叉口运行轨迹呈V 字形,存在一个运行速度最低点 v_{low},如图 11 所示。

取不停车通过交叉口轨迹数据进行分析可知, 不同交叉口v_{low}的分布各不相同,主要可分为顺畅 型(图12a)和干扰型(图12b、图12c)。顺畅型指车 辆通过交叉口时较少受到交叉口干扰,呈现v_{low}期望 在25 km·h⁻¹左右的单峰对称分布;干扰型指车辆受 到交叉口干扰,低速通过的车辆占比增大,可能形成 高低速双峰分布。有轨电车在交叉口的速度波动对 区间整体车速的影响将在下一节进行分析。

以上分析有轨电车在加速段、制动段、巡航段和

交叉口的运行特征。在人工驾驶条件下,不同各阶 段运行特征指标的随机性、波动性会对区间运行速 度和可靠性造成一定影响,下文将具体展开分析。

3 区间运行速度影响因素分析

考虑起终点速度波动对区间运行速度的影响, 取某长度为585m,起终点均为交叉口的区间作为示 例区间IV,该区间线路平直且无特殊管制措施。采 用多元线性回归模型^[14-15]分析运行参数指标对区间 运行速度v的影响。以v为因变量,以起点速度 v_1 , 加速目标速度 v_{st} 、起动加速系数 σ_{st} 、巡航速度 v_{cr} 、区 间最大速度 v_{max} 、制动起始速度 v_{br} 、制动系数 σ_{br} 、终 点速度 v_n 为自变量,建立多元线性回归模型: $v = \beta_0 + \beta_1 v_1 + \beta_2 v_{st} + \beta_3 \sigma_{st} + \beta_4 v_{cr} + \beta_5 v_{max} +$

 $\beta_6 v_{br} + \beta_7 \sigma_{br} + \beta_8 v_n + \epsilon$ (1) 式中: β_0 为常数项, $\beta_1 \sim \beta_8$ 为对应自变量的回归系数; ϵ 为随机误差项。

采用逐步回归方法,按对v影响显著程度逐个 引入变量,并对方程中的原有变量进行检验,剔除没 有显著影响的自变量,最后以最小二乘法(Ordinary Least Squares, OLS)估计线性回归的参数,逐步分 析形成7个过程模型,如表2所示。

本案例中,随着模型中变量个数的增加,拟合优度 R²呈增加趋势,均方根误差(RMSE)呈逐步减小趋势。模型7为最终拟合模型,其分析结果参数如表3所示。最终拟合结果中,R²=0.873,表明建立的回归模型拟合度较好,因变量对自变量的解释度较高;各变量均满足显著性<0.001要求,样本具有统计学意义;方差膨胀系数(Variance Inflation Factor,VIF)均小于10,表明自变量之间不存在共

线性问题。

对变量进行标准化处理后,回归系数标定结果 可表征不同自变量对因变量的影响程度,即对应变 量的回归系数绝对值越大,对区间运行速度的影响 程度越强,该区间基于标准化处理后的回归方程 如下:

$$v = 0.398v_1 + 0.101\sigma_{\rm st} + 0.317v_{\rm cr} + 0.530\sigma_{\rm br} + 0.554v_n$$
(2)

表2 逐步回归分析表

		Tab.2	Stepwise regi	ession analys	sis		
模型参数	模型1	模型2	模型3	模型4	模型5	模型6	模型7
(常量)	34.239	13.531	14.805	9.021	9.322	10.847	10.184
起点速度	0.242	0.231	0.243	0.131	0.140	0.148	0.145
加速目标速度	—	—	—	—	—	—	—
起动加速系数	—	—	—	—	1.494	2.585	2.190
巡航速度	—	—	—	—	—	0.350	0.246
区间最大速度	—	0.377	0.26	0.293	0.267	-0.212	—
制动起始速度	—	—	—	—	—	—	—
制动系数	—	—	9.813	16.071	16.206	17.101	16.762
终点速度	—	—	—	0.261	0.267	0.272	0.271
R^2	0.441	0.655	0.730	0.865	0.868	0.874	0.873
RMSE	3.282	2.581	2.285	1.617	1.602	1.565	1.567
F	406.351	488.094	463.179	821.330	671.286	590.932	706.711
F检验	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

表3 回归分析结果 Tab.3 Results of regression analysis

			,	, i	
模型参数	未标准化 系数	标准化 系数	t	VIF	显著性
(常量)	10.184	—	14.665	1.886	< 0.001
起点速度	0.145	0.398	18.449	1.507	< 0.001
起动加速系数	2.190	0.101	5.096	1.431	< 0.001
巡航速度	0.246	0.317	16.856	1.886	< 0.001
制动系数	16.762	0.530	27.476	2.170	< 0.001
终点速度	0.271	0.554	23.903	1.591	< 0.001

由式(2)可知, v_1 、 σ_{st} 、 v_{cr} 、 σ_{br} 、 v_n 总体能解释区间 平均速度方差变异的87.3%,各指标影响程度排序 分别为 v_n 、 σ_{br} 、 v_1 、 v_{cr} 和 σ_{st} ,其对因变量贡献度分别为 29.1%,27.9%,20.9%、16.7%、5.3%,其中制动因 素(σ_{br} 、 v_n)占57%,加速因素(σ_{st} 、 v_1)占26.2%,巡航 因素 v_{cr} 占16.7%。制动因素对区间整体车速的影 响最大,平均来看,制动系数每提高0.1,可提高约 5%的区间速度,终点速度每提高5 km·h⁻¹,可提高 约4%的区间速度。因此,对有轨电车制动行为进 行车速引导,或通过驻站等方式减少交叉口停车率, 或减少交叉口对有轨电车通行速度的干扰等措施, 都可有效提升有轨电车区间速度。

4 区间运行速度可靠性特征分析

在有轨电车时刻表和信号控制方案优化的研究中, 往往假定有轨电车基于理想的最优速度曲线^[16-17],而 忽略了人工驾驶的随机性特征,这将造成研究结果的 偏差。有轨电车区间运行时间受驾驶行为及交叉口的 速度干扰,呈现一定规律的随机分布,该分布特征使车 辆偏出预规划的绿灯时间,造成额外的延误和时间可 靠性的下降。为描述有轨电车区间运行可靠性特征, 下文对区间IV运行时间进行概率分布拟合,并评估其 在信号协调控制条件下的可靠性特征。 为分析样本内部参数特征组成情况,采用Kmeans聚类算法对样本进行聚类,算法中簇K的取 值将会对分类的结果造成较大影响。K值过小,会 造成聚类结果较松散,各类中变量关系不紧密;K值 过大,会造成分类过细,与研究对象实际情况产生偏 差。因此,选用内部有效性指标误差平方和(Sum of Square Due to Error, SSE)对K值进行择优,选取 从2至14共13个K值进行聚类,并计算其SSE值。 如图13所示,当参数K=4时,图像处于"肘型"图线 曲率最大拐点,曲线变化趋于缓和,确定最佳K 值为4。

按*K*=4进行聚类,得到结果如表4所示。以1 代表不停车高速通过,0代表停车或极低速通过。由 表4可知,簇A区间速度均值最高,达到45.7 km· h⁻¹,起终点均为不停车通过,标记为1-1型。簇B起 点为不停车通过,终点为低速通过,标记为1-0型,簇 B区间速度均值较相比簇A有大幅下降,为37.6 km·h⁻¹,表明终点速度对区间运行平均速度有较大 影响。簇C占总样本数量的68.5%,是本区间主要 通行方式,起终点速度均接近0,标记为0-0型,有较高的加减速系数。簇D起点速度接近0,终点速度为中低速14.2 km·h⁻¹,且伴随着较低制动系数,标记为0-1型,该簇数据反映了较为保守的驾驶行为。簇

A、簇 B 和簇 C 的巡航平均速度均在 54 km · h⁻¹左右, 显示了在 60 km · h⁻¹限速条件下大部分司机的期望巡 航速度。簇 D 的巡航速度分别为 46.4 km · h⁻¹,无法 达到期望巡航速度的主要原因是加减速系数较低。

表4 聚类分析结果 Tab.4 Results of clustering

			聚类中心					
簇	区间速度/	巡航速度/	起点速度/	起动加	终点速度/	制动系数	样本数	类型
	$(\mathrm{km} \cdot \mathrm{h}^{-1})$	$(\mathrm{km} \cdot \mathrm{h}^{-1})$	$(\mathrm{km} \cdot \mathrm{h}^{-1})$	速系数	$(\mathrm{km} \cdot \mathrm{h}^{-1})$			
簇A	45.7	54.6	34.2	0.433	27.2	0.478	45	1 - 1
簇B	37.6	52.3	27.8	0.536	4.6	0.527	46	1 - 0
簇C	34.9	54.4	0.7	0.727	0.8	0.558	355	0-0
籏D	32.1	46.4	1.3	0.562	14.2	0.346	72	0-1

对各簇及总体样本的区间速度进行高斯分布的 Kolmogorov-Smirnov(K-S)检验,结果如表5所示。 由表5可知,各簇的区间速度均能通过基于高斯分 布的K-S检验,而总体样本无法通过该检验。根据 中心极限定理,目标随机变量如果是由大量独立且 均匀的随机变量相加而成,其分布将近似于高斯分 布,驾驶差异由不同司机在不同心理、生理和环境条 件下产生,符合大量独立且均匀的随机变量组合特 性,可能是各簇的区间运行速度最终呈高斯分布的 原因。观测表4的变异系数项,簇C起点和终点速度 均接近0,受交叉口速度影响小,因而变异系数最小, 仅为6.7%;其他簇受交叉口速度影响具有较大的变 异系数(9.2%~11%);而将不同的簇样本混合后总 体变异系数达到12.3%,超过各簇本身,这说明了簇 和簇之间在区间运行速度上存在较大差异,样本总 体不符合高斯分布。

表5 不同簇样本高斯分布检验 Tab.5 Gaussian distribution test of different cluster samples

	1				
指标	全样本	簇A	簇B	簇C	簇D
Р	3.65×10^{-6}	0.898	0.588	0.248	0.404
D	0.112	0.082	0.110	0.053	0.103
期望	35.7	45.7	37.6	34.9	32.1
标准差	4.38	4.21	3.52	2.35	3.55
变异系数/%	12	9.2	9.4	6.7	11

注:D为极端误差(most extreme differences)。

由于全样本区间速度由多个满足高斯分布的簇 混合而成,其构成特征符合高斯混合分布,即可将总 体分布视为若干的基于高斯概率密度子分布的叠 加,其分布密度函数满足

$$\begin{cases} f(x) = \sum_{i=1}^{n} \omega_i f_i(x), n \ge 2\\ \sum_{i=1}^{n} \omega_i = 1, \quad 0 < \omega_i < 1 \end{cases}$$
(3)

式中: $f_i(x), \omega_i$ 为混合分布第i个密度分支及其混合 系数,n为密度分支个数。将 $f_i(x)$ 统一表示为 $f_i(x; \mu_i, \sigma_i), \mu_i$ 和 σ_i 分别为第i个密度分支的参数。 求解f(x)需要计算在对应n值下所有密度分支的参 数以及对应的权重系数 ω_i 。EM(expectation maximization)基于极大似然估计的原理,算法流程 简单,迭代稳定上升有利于找到最优收敛值,常作 为GMM解析算法。使用EM算法对模型进行迭 代,求解不同n值下混合分布的参数集 $\theta =$ { $\omega_1, \omega_2, \cdots \omega_n; \mu_1, \mu_2, \cdots \mu_n; \sigma_1, \sigma_2, \cdots \sigma_n$ },具体计算 流程如下:

步骤1 初始化参数集 θ 。

步骤2 计算第*j*个样本在第*m*次(*m*>1)迭代 中隶属于第*i*个密度分支的概率,即

$$Q_{ji,m} = \frac{\omega_{i,m} p(x_j | \theta_{i,m-1})}{\sum_{k=1}^{n} \omega_{k,m-1} p(x_j | \theta_{k,m-1})}$$
(4)

步骤3 取所有N个样本,以 $Q_{ji,m}$ 评估 θ_m ,即

$$\begin{cases} \omega_{i,m} = \sum_{j=1}^{N} \frac{Q_{ji,m}}{N} \\ \mu_{i,m} = \frac{\sum_{j=1}^{N} Q_{ji,m} x_{i}}{\sum_{j=1}^{N} Q_{ji,m}} \\ \sigma_{i,m}^{2} = \frac{\sum_{j=1}^{N} Q_{ji,m} (x_{i} - \mu_{i,m})^{2}}{\sum_{j=1}^{N} Q_{ji,m}} \end{cases}$$
(5)

步骤4 交替进行步骤2和步骤3,直到 θ 收敛。

以上述方法拟合 2~7个密度分支的 GMM 分布,并以 K-S 检验结合赤池信息准则 (Akaike information criterion, AIC)进行择优,计算结果如表 6所示。

表6 不同分支数高斯混合分布拟合结果

Tab.6	Fitting results of	of GMM	with	different	branch
	numbers				

北左			分支	友数		
指怀	2	3	4	5	6	7
Р	0.55	0.97	0.93	0.6	0.84	0.55
D	0.043	0.025	0.028	0.041	0.032	0.043
AIC	20.43	25.47	31.92	37.47	49.47	55.32

由表6可知,2~7个密度分支均能通过0.05显著 水平的K-S检验,且AIC值随着分支数增加而增大,显 示多分支模型有过拟合的倾向。考虑分支数为3时模 型具有最高的P值和最小的D值且AIC值也较低,因 此选择3分支GMM进行建模,拟合结果如图14所示, 密度分支3的期望同簇A相接近,密度分支2的期望同 簇B相接近,而密度分支1期望介于簇C和簇D的之间, 与上述簇划分相吻合,说明基于GMM对区间运行速 度分布进行拟合与现实情况相符合。

为评估区间运行速度的随机性对信号协调控制 的影响,取不停车通过终点的轨迹数据,计算区间运 行时间期望为59.1 s,方差为10.1 s,绘制其分布如 图15所示。基于遍历搜索算法,以1s为搜索间隔, 在终点交叉口通过调整信号相位差寻找一个最优绿 灯通过区间,计算绿灯信号宽度分别为10、20、30、40 秒时,车辆最优通过概率分别为38.5%、73.1%、 90.7%、98.3%。可以看出,即使按最优相位差配 置,对常见的信号绿波带宽,车辆仍存在较大不通过 概率,对于未偏出绿波带的车辆,也可能由于后续几 个区间运行随机误差的累积,最终偏出预设的信号 绿波。因此,控制由人工随机驾驶和交叉口速度干 扰造成的区间运行速度波动,就能够有效提升有轨 电车运行可靠性。

5 结论

本文得到的主要结论如下:

(1)出于驾驶安全考虑,司机倾向于不充分加速和 制动;由于车辆制动需要基于当前速度和目标位置进 行速度一距离控制,对区间运行速度造成不利影响。

(2)司机在巡航段采用惰行或惰行加速交替的方 式来维持车速,不同趟次平均巡航速度有较大波动性; 由于巡航段操作时间短,同趟次巡航车速波动较小。

(3)司机在交叉口速度曲线呈V字型,速度最低 点由司机驾驶习惯和交叉口干扰共同决定,不同交 叉口最低速度分布差异较大。

(4)区间运行速度主要受车辆加减速系数、巡航 速度和起终点速度影响,制动行为(含制动系数和终 点速度)是区间运行速度的最重要影响因素。

(5)起终点速度相近的轨迹区间运行速度呈高 斯分布,叠加后整体呈高斯混合分布;区间运行速度 变异系数较高,对常见的绿波带宽有较大的偏出率。

从上述结论可知,基于人工驾驶的有轨电车不 利于发挥车辆速度性能,且速度波动性较大。为使 模糊化、主观化的驾驶行为变得更加精确化、标准 化,从远期看,建议使用列车自动驾驶系统替代人工 驾驶。在目前人工驾驶模式下,可通过以下措施进 行优化,如加强司机驾驶行为标准化培训,替换驾驶 行为与群体偏差较大的司机,增设基于道路固定标 识或车载设备的驾驶行为引导系统,改善交叉口安

作者贡献声明:

童文聪:参与论文选题与框架设计,数据采集与分析,数 学建模及论文撰写;

滕 靖:参与论文选题与框架设计,对重要学术性内容 做出关键性修订;

李君羨:参与部分数学建模,论文撰写; 姚 幸:参与数据采集与论文修订; 张中杰:参与数据采集与论文修订。

参考文献:

- (1) 翁剑成,孙宇星,孔宁,等.基于多源数据的公交专用道效能 评价方法与影响模型[J].中国公路学报,2022,35(4):267.
 WENG Jiancheng, SUN Yuxing, KONG Ning, *et al.* Evaluation method and influence model of bus lane performance based on multi-source data[J]. China Journal of Highway and Transport, 2022, 35(4):267.
- [2] 林航飞,崔海鹏.基于二次车速差的公交专用道运行表现分析[J].同济大学学报(自然科学版),2017,45(12):1802.
 LIN Hangfei, CUI Haipeng. Performance evaluation of dedicated bus lanes based on secondary speed difference [J]. Journal of Tongji University (Natural Science), 2017,45 (12):1802.
- [3] DEY P P, CHANDRA S, GANGOPADHAYA S. Speed distribution curves under mixed traffic conditions [J]. Journal of Transportation Engineering, 2006, 132(6): 475.
- [4] PARK B J, ZHANG Y, LORD D. Bayesian mixture modeling approach to account for heterogeneity in speed data [J]. Transportation Research Part B: Methodological, 2010, 44 (5): 662.
- [5] 胡继华,梁嘉贤.贝叶斯框架下快速公交的站间运行状态推断[J].交通运输系统工程与信息,2017,17(2):126.
 HU Jihua, LIANG Jiaxian. Inferring the travel states of bus rapid transit between neighboring stations within a bayesian framework[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 126.
- [6] 陈维荣,刘禺贝,戴朝华,等. 有轨电车典型行驶工况的构建
 [J]. 西南交通大学学报, 2020, 55(6): 1141.
 CHEN Weirong, LIU Yubei, DAI Chaohua. Construction of typical driving cycle for tram[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1141.
- [7] 侯海晶,金立生,关志伟,等.驾驶风格对驾驶行为的影响
 [J].中国公路学报,2018,31(4):18.
 HOU Haijing, JIN Lisheng, GUAN Zhiwei, *et al.* Effects of driving style on driver behavior [J]. China Journal of Highway

and Transport, 2018, 31(4): 18.

- [8] 刘瑞,马志雄,武彪,等.驾驶员驾驶行为的统计学特性[J].
 同济大学学报(自然科学版), 2019, 47(6): 832.
 LIU Rui, MA Zhixiong, WU Biao, *et al.* Driving behavior statistical characteristics of the driver [J]. Journal of Tongji University(Natural Science), 2019, 47(6): 832.
- [9] YANG H, PENG H. Development of an errorable carfollowing driver model [J]. Vehicle System Dynamics, 2010, 48(6): 751.
- [10] 冯树民,黄秋菊,张宇,等.驾驶人"感知-决策-操控"行为模型
 [J].交通运输系统工程与信息,2021,21(1):41.
 FENG Shumin, HUANG Qiuju, ZHANG Yu, *et al.* Driver's perception-decision-control model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (1):41.
- [11] 刘禺贝.基于全工况与司机驾驶风格的混合储能式有轨电车 能量管理策略[D].成都:西南交通大学,2020.
 LIU Yubei. Energy management strategy of hybrid energy storage tram based on the recognition of driving cycle and driving style [D]. Chengdu: Southwest Jiaotong University, 2020.
- KUBIN J, FERKOVA Z. Influnce of driving style of a tram driver on the tram's energy consumption [C]//2015
 International Conference on Electrical Drives and Power Electronics (EDPE). [S.I.]:IEEE, 2015:417-421.
- [13] 中国城市轨道交通协会.现代有轨电车运营管理规范:T-CAMET 07001-2018[S].北京:中国铁道出版社,2018.
 China Association of Metros. Regulation for operation management of modern tram: T-CAMET 07001-2018 [S].
 Beijing: China Railway Publishing House, 2018.
- [14] 江世雄,蔡灿煌,林宇晨,等.天气因素对福州地铁客流的影响分析[J].交通运输系统工程与信息,2021,21(3):268.
 JIANG Shixiong, CAI Canhuang, LIN Yuchen, *et al.* Analysis of weather's influences on metro ridership in fuzhou
 [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3):268.
- [15] 赵敏, 钟志华, 周俊, 等. 回归分析方法在汽车侧撞安全性设 计中的应用[J]. 汽车工程, 2013, 35(8): 706.
 ZHAO Min, ZHONG Zhihua, ZHOU Jun, *et al.* The application of regression analysis to vehicle side impact safety design[J]. Automotive Engineering, 2013, 35(8): 706.
- [16] ZHOU W, BAI Y, LI J, et al. Integrated optimization of tram schedule and signal priority at intersections to minimize person delay [J]. Journal of Advanced Transportation, 2019, 2019 (1494): 1.
- [17] ZHANG T, MAO B, XU Q, *et al.* Timetable optimization for a two-way tram line with an active signal priority strategy [J]. IEEE Access, 2019, 99: 1.